2,697 research outputs found

    Limited Feedback-based Block Diagonalization for the MIMO Broadcast Channel

    Full text link
    Block diagonalization is a linear precoding technique for the multiple antenna broadcast (downlink) channel that involves transmission of multiple data streams to each receiver such that no multi-user interference is experienced at any of the receivers. This low-complexity scheme operates only a few dB away from capacity but requires very accurate channel knowledge at the transmitter. We consider a limited feedback system where each receiver knows its channel perfectly, but the transmitter is only provided with a finite number of channel feedback bits from each receiver. Using a random quantization argument, we quantify the throughput loss due to imperfect channel knowledge as a function of the feedback level. The quality of channel knowledge must improve proportional to the SNR in order to prevent interference-limitations, and we show that scaling the number of feedback bits linearly with the system SNR is sufficient to maintain a bounded rate loss. Finally, we compare our quantization strategy to an analog feedback scheme and show the superiority of quantized feedback.Comment: 20 pages, 4 figures, submitted to IEEE JSAC November 200

    Eigen-Based Transceivers for the MIMO Broadcast Channel with Semi-Orthogonal User Selection

    Full text link
    This paper studies the sum rate performance of two low complexity eigenmode-based transmission techniques for the MIMO broadcast channel, employing greedy semi-orthogonal user selection (SUS). The first approach, termed ZFDPC-SUS, is based on zero-forcing dirty paper coding; the second approach, termed ZFBF-SUS, is based on zero-forcing beamforming. We first employ new analytical methods to prove that as the number of users K grows large, the ZFDPC-SUS approach can achieve the optimal sum rate scaling of the MIMO broadcast channel. We also prove that the average sum rates of both techniques converge to the average sum capacity of the MIMO broadcast channel for large K. In addition to the asymptotic analysis, we investigate the sum rates achieved by ZFDPC-SUS and ZFBF-SUS for finite K, and show that ZFDPC-SUS has significant performance advantages. Our results also provide key insights into the benefit of multiple receive antennas, and the effect of the SUS algorithm. In particular, we show that whilst multiple receive antennas only improves the asymptotic sum rate scaling via the second-order behavior of the multi-user diversity gain; for finite K, the benefit can be very significant. We also show the interesting result that the semi-orthogonality constraint imposed by SUS, whilst facilitating a very low complexity user selection procedure, asymptotically does not reduce the multi-user diversity gain in either first (log K) or second-order (loglog K) terms.Comment: 35 pages, 3 figures, to appear in IEEE transactions on signal processin

    Sum Rates, Rate Allocation, and User Scheduling for Multi-User MIMO Vector Perturbation Precoding

    Full text link
    This paper considers the multiuser multiple-input multiple-output (MIMO) broadcast channel. We consider the case where the multiple transmit antennas are used to deliver independent data streams to multiple users via vector perturbation. We derive expressions for the sum rate in terms of the average energy of the precoded vector, and use this to derive a high signal-to-noise ratio (SNR) closed-form upper bound, which we show to be tight via simulation. We also propose a modification to vector perturbation where different rates can be allocated to different users. We conclude that for vector perturbation precoding most of the sum rate gains can be achieved by reducing the rate allocation problem to the user selection problem. We then propose a low-complexity user selection algorithm that attempts to maximize the high-SNR sum rate upper bound. Simulations show that the algorithm outperforms other user selection algorithms of similar complexity.Comment: 27 pages with 6 figures and 2 tables. Accepted for publication in IEEE Trans. Wireless Comm
    • …
    corecore