164 research outputs found

    Low-complexity LSMR equalisation of FrFT-based multicarrier systems in doubly dispersive channels

    Get PDF
    The discrete fractional Fourier transform (FrFT) has been suggested to enhance performance over DFT-based multicarrier systems when transmitting over doubly-dispersive channels. In this paper, we propose a novel low-complexity equaliser for inter-symbol and inter-carrier interference arising in such multicarrier transmission system. Due to a lower spreading in the FrFT-domain compared to the DFTchannel matrix as compared to the DFT domain, the equaliser cam approximate the fractional-domain channel matrix by a band matrix. Further, we utilise the least squares minres (LSMR) algorithm in the calculation of the equalisation, which exhibits attractive numerical properties and low complexity. Simulation results demonstrate the superior performance of the proposed LSMR equaliser over benchmark schemes

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Minimize MIMO OFDM interference and noise ratio using polynomial-time algorithm

    Get PDF
    In the distributed transmit antenna MIMO OFDM system, each transmitting antenna has different frequency offset between each transmitting antenna and receiver due to the use of independent crystal oscillator. This paper proposes Polynomial-time algorithm for correcting the frequency offset in a received signal by maximizing the conditional average signal. The algorithm focus on reducing to interference and noise ratio of each subcarrier on the receiving antenna by frequency offset. The simulation result shows the performance of the proposed algorithm is slightly improved compared with the existing frequency offset correction algorithm, and the complexity is reduced by 50% or more

    Phase-Noise Compensation for OFDM Systems Exploiting Coherence Bandwidth: Modeling, Algorithms, and Analysis

    Full text link
    Phase-noise (PN) estimation and compensation are crucial in millimeter-wave (mmWave) communication systems to achieve high reliability. The PN estimation, however, suffers from high computational complexity due to its fundamental characteristics, such as spectral spreading and fast-varying fluctuations. In this paper, we propose a new framework for low-complexity PN compensation in orthogonal frequency-division multiplexing systems. The proposed framework also includes a pilot allocation strategy to minimize its overhead. The key ideas are to exploit the coherence bandwidth of mmWave systems and to approximate the actual PN spectrum with its dominant components, resulting in a non-iterative solution by using linear minimum mean squared-error estimation. The proposed method obtains a reduction of more than 2.5x in total complexity, as compared to the existing methods. Furthermore, we derive closed-form expressions for normalized mean squared-errors (NMSEs) as a function of critical system parameters, which help in understanding the NMSE behavior in low and high signal-to-noise ratio regimes. Lastly, we study a trade-off between performance and pilot-overhead to provide insight into an appropriate approximation of the PN spectrum.Comment: To appear in IEEE Transactions on Wireless Communication

    Doppler Shift Compensation Schemes in VANETs

    Get PDF

    Transmission Experiment of Bandwidth Compressed Carrier Aggregation in a Realistic Fading Channel

    Get PDF
    In this paper, an experimental testbed is designed to evaluate the performance of a bandwidth compressed multicarrier technique termed spectrally efficient frequency division multiplexing (SEFDM) in a carrier aggregation (CA) scenario1. Unlike orthogonal frequency division multiplexing (OFDM), SEFDM is a non-orthogonal waveform which, relative to OFDM, packs more sub-carriers in a given bandwidth, thereby improving spectral efficiency. CA is a long term evolution-advanced (LTE-Advanced) featured technique that offers a higher throughput by aggregating multiple legacy radio bands. Considering the scarcity of radio spectrum, SEFDM signals can be utilized to enhance CA performance. The combination of the two techniques results in a larger number of aggregated component carriers (CCs) and therefore increased data rate in a given bandwidth with no additional spectral allocation. It is experimentally shown that CA-SEFDM can aggregate up to 7 CCs in a limited bandwidth while CA-OFDM can only put 5 CCs in the same bandwidth. In this work, LTE-like framed CA-SEFDM signals are generated and delivered through a realistic LTE channel. A complete experimental setup is described together with error performance and effective spectral efficiency comparisons. Experimental results show that the measured BER performance for CA-SEFDM is very close to CA-OFDM and the effective spectral efficiency of CA-SEFDM can be substantially higher than that of CA-OFDM
    corecore