18 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Channels and parameters acquisition in cooperative OFDM systems

    Get PDF
    CODIV, FP7/ICT/2007/215477CADWIN, PTDC/EEA – TEL/099241/2008Portuguese Foundation for Science and Technology (FCT

    PERFORMANCE ANALYSIS OF DIFFERENT SCHEMES FOR TRANSMISSION OF WATERMARKED MEDICAL IMAGES OVER FADING CHANNELS

    Get PDF
    ABSTRACT Performance Analysis of Different Schemes for Transmission of Watermarked Medical images over Fading Channels Praveen Kumar Korrai In this thesis, we investigate different types of robust schemes for transmission of medical images with concealed patient information as a watermark. In these schemes, spatial domain digital watermarking technique is adapted to embed the patient information as a watermark into the lower order bits of the medical images to reduce the storage and transmission overheads. The watermark, which comprises text data, is encrypted to prevent unauthorized access of data. To enhance the robustness of the embedded information, the encrypted watermark is coded by concatenation of Reed Solomon (RS) and low density parity check (LDPC) codes. A robust scheme for transmission of watermarked images over impulsive noisy wireless channels is first proposed and its performance analyzed. In this scheme, the bursty wireless channel is simulated by adding impulse noise to the watermark embedded image. Furthermore, turbo channel coding is used to correct the transmission errors over impulsive noisy wireless channels. However, single input single output (SISO) channel capacity is not enough to provide modern wireless services such as data and multimedia messaging services. Further, it is not reliable due to multipath fading. To overcome these problems, a multiple-input multiple-output (MIMO) transmission scheme in which multiple antennas are used at both the transmitter and the receiver has emerged as one of the most significant technical breakthroughs in modern wireless communications. MIMO can improve the channel capacity and provide diversity gain. Hence, a scheme with a MIMO channel is proposed for the transmission of watermarked medical images over Rayleigh flat fading channels and its performance analyzed using MIMO maximum likelihood detector at the receiver. We present another scheme, namely, MIMO space frequency block coded OFDM (MIMO SFBC OFDM) in this thesis for transmission of watermarked medical images over Rayleigh fading channels to mitigate the detrimental effects due to frequency selective fading. The performance of this MIMO SFBC OFDM scheme is analyzed and compared with that of SISO-OFDM using minimum mean square error V-BLAST- based detection at the receiver. The efficacy of the different proposed schemes is illustrated through implementation results on watermarked medical images

    Channel estimation and parameters acquisition systems employing cooperative diversity

    Get PDF
    Doutoramento em Engenharia Eletrotécnica e TelecomunicaçõesThis work investigates new channel estimation schemes for the forthcoming and future generation of cellular systems for which cooperative techniques are regarded. The studied cooperative systems are designed to re-transmit the received information to the user terminal via the relay nodes, in order to make use of benefits such as high throughput, fairness in access and extra coverage. The cooperative scenarios rely on OFDM-based systems employing classical and pilot-based channel estimators, which were originally designed to pointto-point links. The analytical studies consider two relaying protocols, namely, the Amplifyand-Forward and the Equalise-and-Forward, both for the downlink case. The relaying channels statistics show that such channels entail specific characteristics that comply to a proper filter and equalisation designs. Therefore, adjustments in the estimation process are needed in order to obtain the relay channel estimates, refine these initial estimates via iterative processing and obtain others system parameters that are required in the equalisation. The system performance is evaluated considering standardised specifications and the International Telecommunication Union multipath channel models.Este trabalho tem por objetivo o estudo de novos esquemas de estimação de canal para sistemas de comunicação móvel das próximas gerações, para os quais técnicas cooperativa são consideradas. Os sistemas cooperativos investigados neste trabalho estão projetados para fazerem uso de terminais adicionais a fim de retransmitir a informação recebida para o utilizador final. Desta forma, pode-se usurfruir de benefícios relacionados às comunicações cooperativas tais como o aumento do rendimento do sistema, fiabilidade e extra cobertura. Os cenários são basedos em sistemas OFDM que empregam estimadores de canal que fazem uso de sinais piloto e que originalmente foram projetados para ligações ponto a ponto. Os estudos analíticos consideram dois protocolos de encaminhamento, nomeadamente, Amplify-and-Forward e Equalise-and-Forward, ambos para o caso downlink. As estatísticas dos canais em estudo mostram que tais canais ocasionam características específicas para as quais o filtro do estimador e a equalisação devem ser apropridamente projetados. Estas características requerem ajustes que são necessários no processo de estimação a fim de estimar os canais, refinar as estimativas iniciais através de processos iterativos e ainda obter outros parâmetros do sistema que são necessários na equalização. O desempenho dos esquemas propostos são avaliados tendo em consideração especificações padronizadas e modelos de canal descritos na International Telecommunication Union

    A hybrid-structure offset-QAM filter-bank multi-carrier MIMO system

    Get PDF
    Offset quadrature amplitude modulation (OQAM) filter-bank multi-carrier (FBMC), has great potential for boosting the spectral efficiency (SE) and energy efficiency (EE) of future communication systems. This is due to its superior spectral localization, CP-less transmission and relaxed synchronization requirements. Our research focuses on three main OQAM/FBMC research problems: the computational complexity reduction taking equalization into consideration, its integration with multiple-input multiple-output (MIMO) and its high peak-to-average power ratio (PAPR). OQAM/FBMC systems are mainly implemented either using frequency spreading (FS) or polyphase network (PPN) techniques. The PPN technique is generally less complex, but when using frequency domain equalization (FDE) to equalize multipath channel effects at the receiver, there is a computational complexity overhead when using PPN. A novel hybrid-structure OQAM/FBMC MIMO space-frequency block coding (SFBC) system is proposed, to achieve the lowest possible overall complexity in conjunction with FDE at the receiver in frequency selective Rayleigh fading channel. The Alamouti SFBC block coding is performed on the complex-orthogonal signal before OQAM processing, which resolves the problems of intrinsic interference when integrating OQAM/FBMC with MIMO. In better multipath channel conditions with a line-of-sight (LOS) path, a zero-forcing (ZF) time domain equalization (TDE) is exploited to further reduce the computational complexity with comparable performance bit-error-rate (BER). On the other hand, to tackle the high PAPR problem of the OQAM/FBMC system in the uplink, a novel single carrier (SC)-OQAM/FBMC MIMO system is proposed. The system uses DFT-spreading applied to the OQAM modulated signal, along with interleaved subcarrier mapping to significantly reduce the PAPR and enhance the BER performance over Rayleigh fading channels, with relatively low additional computational complexity compared to the original complexity of the FBMC system and compared to other FBMC PAPR reduction techniques.The proposed hybrid-structure system has shown significant BER performance in frequency-selective Rayleigh fading channels compared to OFDM, with significantly lower OOB emissions in addition to the enhanced SE due to the absence of CP. In mild multipath fading channels with a LOS component, the PPN OQAM/FBMC MIMO using TDE has a comparable BER performance with significantly less computational complexity. As for the uplink, the SC-OQAM/FBMC MIMO system significantly reduces the PAPR and enhances the BER performance, with relatively low additional computational complexity

    Iterative detection for frequency-asynchronous distributed Alamouti-coded (FADAC) OFDM

    Get PDF
    We propose a near intercarrier interference (ICI)-free and very low complexity iterative detector for frequency-asynchronous distributed Alamouti-coded (FADAC) orthogonal frequency division multiplexing (OFDM). In the previous cancelation schemes, the entire subcarrier signals from one transmit (TX) antenna are estimated and canceled in the received signal from the other TX antenna and vice versa. However, the reliability of the estimated symbols are revealed to significantly vary across the subcarriers and thus, the poorly estimated symbols lead to the incorrect cancelation. Motivated from this, we first propose a scheme which does not cancel the interfering subcarrier(s) at the half band edges which undergo very high interference in FADAC-OFDM. For further improvement, we propose a so-called selective scheme which instantly measures the reliability of the detected symbols at each iteration and then exclude the unreliable symbols in the estimated interference generation. Moreover, the proposed scheme has a drastically reduced complexity by converting the cancelation process from the subcarrier domain to the time domain. In accordance with the analysis on the considered reliability measures, the numerical results show that the proposed scheme achieves the near ICI-free level only within three or four iterations for wide ranges of SNR, frequency offset, and delay spread.1

    Co-Efficient Vector Based Differential Distributed Quasi-Orthogonal Space Time Frequency Coding

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Distributed space time frequency coding (DSTFC) schemes address problems of performance degradation encountered by cooperative broadband networks operating in highly mobile environments. Channel state information (CSI) acquisition is, however, impractical in such highly mobile environments. Therefore, to address this problem, designers focus on incorporating differential designs with DSTFC for signal recovery in environments where neither the relay nodes nor destination have CSI. Traditionally, unitary matrix-based differential designs have been used to generate the differentially encoded symbols and codeword matrices. Unitary based designs are suitable for cooperative networks that utilize the amplify-and-forward protocol where the relay nodes are typically required to forego differential decoding. In considering other scenarios where relay nodes are compelled to differentially decode and re-transmit information signals, we propose a novel co-efficient vector differential distributed quasi-orthogonal space time frequency coding (DQSTFC) scheme for decode-and-forward cooperative networks. Our proposed space time frequency coding scheme relaxes the need for constant channel gain in the temporal and frequency dimensions over long symbol periods; thus, performance degradation is reduced in frequency-selective and time-selective fading environments. Simulation results illustrate the performance of our proposed co-efficient vector differential DQSTFC scheme under different channel conditions. Through pair-wise error probability analysis, we derive the full diversity design criteria for our code.Peer reviewe

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore