3,770 research outputs found

    Generalized DOA and Source Number Estimation Techniques for Acoustics and Radar

    Get PDF
    The purpose of this thesis is to emphasize the lacking areas in the field of direction of arrival estimation and to propose building blocks for continued solution development in the area. A review of current methods are discussed and their pitfalls are emphasized. DOA estimators are compared to each other for usage on a conformal microphone array which receives impulsive, wideband signals. Further, many DOA estimators rely on the number of source signals prior to DOA estimation. Though techniques exist to achieve this, they lack robustness to estimate for certain signal types, particularly in the case where multiple radar targets exist in the same range bin. A deep neural network approach is proposed and evaluated for this particular case. The studies detailed in this thesis are specific to acoustic and radar applications for DOA estimation

    Localization of sound sources : a systematic review

    Get PDF
    Sound localization is a vast field of research and advancement which is used in many useful applications to facilitate communication, radars, medical aid, and speech enhancement to but name a few. Many different methods are presented in recent times in this field to gain benefits. Various types of microphone arrays serve the purpose of sensing the incoming sound. This paper presents an overview of the importance of using sound localization in different applications along with the use and limitations of ad-hoc microphones over other microphones. In order to overcome these limitations certain approaches are also presented. Detailed explanation of some of the existing methods that are used for sound localization using microphone arrays in the recent literature is given. Existing methods are studied in a comparative fashion along with the factors that influence the choice of one method over the others. This review is done in order to form a basis for choosing the best fit method for our use

    Two-dimensional direction-of-arrival estimation with time-modulated arrays

    Get PDF
    Two-dimensional direction-of-arrival estimation with time-modulated array

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell

    Low cost underwater acoustic localization

    Full text link
    Over the course of the last decade, the cost of marine robotic platforms has significantly decreased. In part this has lowered the barriers to entry of exploring and monitoring larger areas of the earth's oceans. However, these advances have been mostly focused on autonomous surface vehicles (ASVs) or shallow water autonomous underwater vehicles (AUVs). One of the main drivers for high cost in the deep water domain is the challenge of localizing such vehicles using acoustics. A low cost one-way travel time underwater ranging system is proposed to assist in localizing deep water submersibles. The system consists of location aware anchor buoys at the surface and underwater nodes. This paper presents a comparison of methods together with details on the physical implementation to allow its integration into a deep sea micro AUV currently in development. Additional simulation results show error reductions by a factor of three.Comment: 73rd Meeting of the Acoustical Society of Americ

    MilliSonic: Pushing the Limits of Acoustic Motion Tracking

    Full text link
    Recent years have seen interest in device tracking and localization using acoustic signals. State-of-the-art acoustic motion tracking systems however do not achieve millimeter accuracy and require large separation between microphones and speakers, and as a result, do not meet the requirements for many VR/AR applications. Further, tracking multiple concurrent acoustic transmissions from VR devices today requires sacrificing accuracy or frame rate. We present MilliSonic, a novel system that pushes the limits of acoustic based motion tracking. Our core contribution is a novel localization algorithm that can provably achieve sub-millimeter 1D tracking accuracy in the presence of multipath, while using only a single beacon with a small 4-microphone array.Further, MilliSonic enables concurrent tracking of up to four smartphones without reducing frame rate or accuracy. Our evaluation shows that MilliSonic achieves 0.7mm median 1D accuracy and a 2.6mm median 3D accuracy for smartphones, which is 5x more accurate than state-of-the-art systems. MilliSonic enables two previously infeasible interaction applications: a) 3D tracking of VR headsets using the smartphone as a beacon and b) fine-grained 3D tracking for the Google Cardboard VR system using a small microphone array

    Vector sensors for underwater : acoustic communications

    Get PDF
    Acoustic vector sensors measure acoustic pressure and directional components separately. A claimed advantage of vector sensors over pressure-only arrays is the directional information in a collocated device, making it an attractive option for size-restricted applications. The employment of vector sensors as a receiver for underwater communications is relatively new, where the inherent directionality, usually related to particle velocity, is used for signal-to-noise gain and intersymbol interference mitigation. The fundamental question is how to use vector sensor directional components to bene t communications, which this work seeks to answer and to which it contributes by performing: analysis of acoustic pressure and particle velocity components; comparison of vector sensor receiver structures exploring beamforming and diversity; quanti cation of adapted receiver structures in distinct acoustic scenarios and using di erent types of vector sensors. Analytic expressions are shown for pressure and particle velocity channels, revealing extreme cases of correlation between vector sensors' components. Based on the correlation hypothesis, receiver structures are tested with simulated and experimental data. In a rst approach, called vector sensor passive time-reversal, we take advantage of the channel diversity provided by the inherent directivity of vector sensors' components. In a second approach named vector sensor beam steering, pressure and particle velocity components are combined, resulting in a steered beam for a speci c direction. At last, a joint beam steering and passive time-reversal is proposed, adapted for vector sensors. Tested with two distinct experimental datasets, where vector sensors are either positioned on the bottom or tied to a vessel, a broad performance comparison shows the potential of each receiver structure. Analysis of results suggests that the beam steering structure is preferable for shorter source-receiver ranges, whereas the passive time-reversal is preferable for longer ranges. Results show that the joint beam steering and passive time-reversal is the best option to reduce communication error with robustness along the range.Sensores vetoriais acústicos (em inglês, acoustic vector sensors) são dispositivos que medem, alem da pressão acústica, a velocidade de partícula. Esta ultima, é uma medida que se refere a um eixo, portando, esta associada a uma direção. Ao combinar pressão acústica com componentes de velocidade de partícula pode-se estimar a direção de uma fonte sonora utilizando apenas um sensor vetorial. Na realidade, \um" sensor vetorial é composto de um sensor de pressão (hidrofone) e um ou mais sensores que medem componentes da velocidade de partícula. Como podemos notar, o aspecto inovador está na medição da velocidade de partícula, dado que os hidrofones já são conhecidos.(...)This PhD thesis was supported by the Brazilian Navy Postgraduate Study Abroad Program Port. 227/MB-14/08/2019

    CABE : a cloud-based acoustic beamforming emulator for FPGA-based sound source localization

    Get PDF
    Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.</jats:p
    corecore