324 research outputs found

    A High-Power Medium-Voltage Open-Loop Induction Motor Drive for Industry Applications: Stability Analysis and Implementation

    Get PDF
    Due to their several advantages, induction motors are widely used for industrial applications today. The present study focuses on developing a robust high-power induction motor variable frequency drive. In order to test the algorithms of the motor control on an actual induction motor, it is important to first carry out simulation tests to verify and troubleshoot the control strategy. One of the most common software used for such a need is MATLAB/Simulink. To run such experiments requires a significant simulation time and at the same time must satisfy a certain level of accuracy. Therefore, one of the objectives of the thesis is to carry out a study on some of the ODE solvers of MATLAB/Simulink to choose the most efficient solver for the simulation tests of the motor control strategy. The fixed step solvers ode1, ode2 and ode4 and the variable step solvers ode45, ode113 and ode23 are studied in terms of the actual time taken to complete the simulations and the relative tolerance of each solver. Comparing the performance of the fixed step and variable step solvers it is evident that the variable step solvers outperformed the fixed step solvers in terms of both speed and accuracy. One of the most famous speed control strategies is the open loop V/Hz control. In this control method two modulation techniques were studied. This was the asynchronous modulation technique and the synchronous modulation technique. With the use of the asynchronous modulation technique subharmonics are introduced. To avoid the introduction of such harmful subharmonics the synchronous modulation technique is proposed. The synchronous modulation technique is implemented with the open loop V/Hz control strategy and simulation tests were carried out to verify the problem of subharmonics being removed. Another problem encountered with the open loop V/Hz control strategy is the presence of large current and torque oscillations of the motor at low to medium frequencies. This is due to the nonlinear interactions between the electrical and mechanical subsystems. To mitigate these unwanted oscillations a stability analysis of the open loop V/Hz control is carried out and a region of instability is determined. Two mitigation techniques are proposed in this thesis namely varying slope V/Hz control strategy and the active damping control strategy. The proposed techniques are verified and validated through simulation tests on a 7 MW medium voltage (MV) induction motor in MATLAB/Simulink and on a low voltage (LV) induction motor in laboratory without a mechanical load. Moreover, in this thesis it has been examined that with the consideration of the magnetic saturation of the motor, more stable operations are achieved. This is firstly verified in simulation where considering the magnetic saturation allowed the use of higher flux values providing more stable machine operations while at the same time allowing for a larger torque. With the experimental test on a 10-kW induction motor it was proved that the results obtained through simulations where more stable operations were seen as the value of the flux were increased were correct. In the power applications such as the ac-dc conversion for the above mentioned 7 MW medium voltage induction motor, a high total harmonic distortion (THD) can be seen in the primary currents with the use of the conventional diode-based ac-dc conversion. In addition, such a conversion does not permit the control of the dc link voltage and has not power factor correction. To overcome these shortcomings the Active Front End rectifier which uses IGBTs that can be electronically controlled is used. In the AFE, the waveform of the input current is monitored and is shaped to be sinusoidal as a result decreasing the THD. Another significant advantage of the AFE rectifier is its capability to handle regenerative power. In this thesis, two configurations of the AFE rectifier are studied. These two configurations include firstly the development of the AFE rectifier using a two-level three-phase inverter and secondly the development of the AFE rectifier with single phase H-bridge cells. From the comparison of the performance of the two configurations of the AFE it is seen that the AFE realised with the H Bridge cells and phase shifted secondary was the best in terms of the THD and the dc link voltage ripple. From these results the AFE realised with H Bridge circuits and phase shifted secondary is chosen for the operation of a real high-power induction motor controlled with the open loop V/Hz control strategy and equipped with the active damping technique for mitigating the current and torque oscillations

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Computer Simulation of PMSM Motor with Five Phase Inverter Control using Signal Processing Techniques

    Get PDF
    The signal processing techniques and computer simulation play an important role in the fault diagnosis and tolerance of all types of machines in the first step of design. Permanent magnet synchronous motor (PMSM) and five phase inverter with sine wave pulse width modulation (SPWM) strategy is developed. The PMSM speed is controlled by vector control. In this work, a fault tolerant control (FTC) system in the PMSM using wavelet switching is introduced. The feature extraction property of wavelet analysis used the error as obtained by the wavelet de-noised signal as input to the mechanism unit to decide the healthy system. The diagnosis algorithm, which depends on both wavelet and vector control to generate PWM as current based manage any parameter variation. An open-end phase PMSM has a larger range of speed regulation than normal PMSM. Simulation results confirm the validity and effectiveness of the switching strategy

    Power conversion for a modular lightweight direct-drive wind turbine generator

    Get PDF
    A power conversion system for a modular lightweight direct-drive wind turbine generator has been proposed, based on a modular cascaded multilevel voltage-source inverter. Each module of the inverter is connected to two generator coils, which eliminates the problem of DC-link voltage balancing found in multilevel inverters with a large number of levels.The slotless design of the generator, and modular inverter, means that a high output voltage can be achieved from the inverter, while using standard components in the modules. Analysis of the high voltage issues shows that isolating the modules to a high voltage is easily possible, but insulating the generator coils could result in a signicant increase in the airgap size, reducing the generator effciency. A boost rectier input to the modules was calculated to have the highest electrical effciency of all the rectier systems tested, as well as the highest annual power extraction, while having a competitive cost. A rectier control system, based on estimating the generator EMF from the coil current and drawing a sinusoidal current in phase with the EMF, was developed. The control system can mitigate the problem of airgap eccentricity, likely to be present in a lightweight generator. A laboratory test rig was developed, based on two 2.5kW generators, with 12 coils each. A single phase of the inverter, with 12 power modules, was implemented, with each module featuring it's own microcontroller. The system is able to produce a good quality AC voltage waveform, and is able to tolerate the fault of a single module during operation. A decentralised inverter control system was developed, based on all modules estimating the grid voltage position and synchronising their estimates. Distributed output current limiting was also implemented, and the system is capable of riding through grid faults

    Doubly Fed Drives for Variable Speed Wind Turbines

    Get PDF

    Effect of duty cycle on THD for multilevel inverter based on selective harmonic elimination technique

    Get PDF
    Multilevel inverters controlled suffers from the issue of harmonic distortion in the output voltage. Selective Harmonic Elimination (SHE) technique plays an effective role to eliminate these harmonics. The undesirable odd harmonics can be eliminated by having optimized the switching angles in SHE signal. To optimized and obtained these switching angles, a number of nonlinear equations should be solved using a numerical method. In addition to the modulation index, by changing the value of the duty cycle the Total Harmonics Distortion (THD) will also change. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed in order to minimize Total Harmonic Distortion (THD). To evaluate and investigate the performance of the proposed scheme, a seven-level cascaded inverter is simulated by MATLAB and PSIM software

    Design and analysis of three phase inverter based Solar PV powered single switch Buck-Boost converter with reduced THD for industrial applications

    Get PDF
    The development of economical and sustainable eco-friendly renewable source powered power electronic converters have become more attractive in various areas such as automotive, household and industrial applications etc., Bucking and boosting of voltage according to the requirement is also much needed. So, this work proposes a solar PV powered single switch buck-boost converter which reduces implementation cost, minimal voltage and current stress across the capacitors and diodes and less switching power losses. The work structure comprises of solar PV source with modified P and O algorithm based MPPT, single switch buck-boost dc-dc converter, battery backup to store excess energy, three phase inverter with sinusoidal PWM to find optimal switching angles for harmonic control and 3Φ induction motor load. Here reduction of THD is applied to the line to line voltage of the inverter. Performance analysis of the proposed circuit is done using MATLAB/SIMULINK platform. A detailed steady state analysis of the dc-dc converter topology is also analyzed to system stability. The proposed single switch buck-boost converter is designed to provide an output voltage and current of 363V, 45.5A DC from 520V, 35A PV array. The designed converter is then employed to run a three phase full bridge inverter with 440V, 15A AC. From the simulation results, it is found that the solar powered single switch buck-boost with MPPT is stable, efficient with minimal losses and less THD with better quality output

    Design Tools for Submersible Converter

    Get PDF

    An Open-End Winding Four-Level Five-Phase Drive

    Get PDF
    A four-level five-phase open-end winding (OeW) drive topology is introduced in this paper. The drive comprises a five-phase induction machine with open-end stator windings, supplied using two two-level voltage-source inverters with isolated and unequal dc-link voltages, in the ratio 2 : 1. The topology offers the advantages of a modular structure with fewer semiconductor components and has a greater potential for fault tolerance, as compared with an equivalent single-sided four-level drive. Due to the large number of switching states, development of a suitable space vector pulsewidth-modulation (PWM) method can be challenging. Hence, this paper examines the implementation of two-level-shifted carrier-based PWM methods. The effect of dead time on the drive performance is discussed, and it is shown that simultaneous PWM switching of both inverters can lead to degraded output phase voltage waveforms. Detailed analysis of this phenomenon is presented, a solution is proposed, and the modified modulation techniques are incorporated in an experimental setup, at first in conjunction with V/f control. Once the proof of concept has been provided, full field-oriented control is implemented in this OeW drive topology for the first time; detailed experimental testing is conducted, and results are reported

    Modulation and control strategies for multilevel five-phase open-end winding drives

    Get PDF
    Industrial and automotive trends clearly demonstrate an increased interest in medium- and high-power variable speed drives. Despite constant progress in the technology, the semiconductor characteristics are still the bottleneck in drive designs, due to their limitations to block high voltage (several kilovolts) and conduct high current (several hundreds of amperes per-phase). For this reason and numerous other advantages, solutions based on multilevel inverters and multiphase machines are considered in recent years. The open-end winding drives are an alternative approach for drives construction. This thesis investigates carrier based pulse width modulation schemes for five-phase open-end winding drives. Two drive topologies, with isolated dc-links of two inverters, are considered. The first one consists of two two-level inverters and a five-phase machine. The second topology utilises one three- and one two-level five-phase inverter. It is shown that the same drive structure can produce a different number of phase voltage levels, when different dc-link voltages of two inverters are in use. Hence, dc-link voltage ratio is considered as an additional degree of freedom. An open-end winding structure that comprises of two two-level inverters offers harmonic performance equivalent to three- and four-level single-sided supply. The second drive structure under analysis is able to produce four, five and six voltage levels, depending on utilised dc-link voltage ratio. Modulation schemes are classified in two categories. So-called coupled modulation schemes are developed under the assumption that open-end winding drives are equivalent to certain single-sided multilevel solutions. This enables the application of slightly modified modulation methods for multilevel inverters, to the open-end winding configurations. As a consequence, number of utilised voltage levels can be higher than the sum of two inverters’ number of levels. However, this boost in number of levels relies on simultaneous switching in two inverters’ legs connected to the same drive phase,which causes so-called dead-time spikes. The second group, referred to in this thesis as decoupled modulation schemes, rely on the separate modulation of two inverters, using voltage references obtained by splitting the overall phase voltage reference, proportionally to inverters’ dc-link voltages. Hence, this kind of modulation offers somewhat worse harmonic performance, when compared to coupled modulation schemes. Special attention is paid to the stability of dc-link voltage levels, which is one of the most important figures of merits of quality for multilevel drives. Using a novel analysis approach, it is demonstrated that utilisation of optimal harmonic performance offered by coupled modulation methods leads to unstable dc-link voltages, but only in the cases where dc-link voltage ratio is used for increment of available number of voltage levels. Decoupled modulation methods offer stable dc-link voltages, regardless of drive configuration. One of the drawbacks of the analysed open-end winding drives is the need for two isolated dc sources, which form dc-link voltages of two inverters. For that reason, a possibility to use only one dc-source in open-end winding drives with isolated inverters is considered. Analysis shows that both drive topologies can be operated using so-called bulk and conditioning inverter control, where bulk inverter is supplied from an active dc source, but operates in staircase mode, while conditioning inverter performs high-frequency pulse width modulation, in order to suppress low-order harmonic content. This kind of operation is investigated in details for two specific configurations in which two inverters never operate at the same time in PWM mode, when coupled modulation methods are used. Comparison of the results shows that topology which comprises from one three- and one two-level inverter is more suitable for this kind of control. Together with previously analysed configurations and modulation strategies, dynamic performance of this novel drive is tested under the closed-loop speed control. Experimental results show that open-end winding drives are suitable for a wide range of applications
    • …
    corecore