680 research outputs found

    Multiqubit Clifford groups are unitary 3-designs

    Full text link
    Unitary tt-designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary tt-designs with t3t\geq3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension~4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful to studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest to studying quantum computation.Comment: 7 pages, published in Phys. Rev.

    Phase Retrieval Using Unitary 2-Designs

    Full text link
    We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are chosen by the observer. This problem has applications to quantum process tomography, when the unknown process is a unitary operation. We show that PhaseLift, a convex programming algorithm for phase retrieval, can be adapted to this matrix setting, using measurements that are sampled from unitary 4- and 2-designs. In the case of unitary 4-design measurements, we show that PhaseLift can reconstruct all unitary matrices, using a near-optimal number of measurements. This extends previous work on PhaseLift using spherical 4-designs. In the case of unitary 2-design measurements, we show that PhaseLift still works pretty well on average: it recovers almost all signals, up to a constant additive error, using a near-optimal number of measurements. These 2-design measurements are convenient for quantum process tomography, as they can be implemented via randomized benchmarking techniques. This is the first positive result on PhaseLift using 2-designs.Comment: 21 pages; v3: minor revisions, to appear at SampTA 2017; v2: rewritten to focus on phase retrieval, with new title, improved error bounds, and numerics; v1: original version, titled "Quantum Compressed Sensing Using 2-Designs

    Schur-Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations

    Get PDF
    Schur-Weyl duality is a ubiquitous tool in quantum information. At its heart is the statement that the space of operators that commute with the tensor powers of all unitaries is spanned by the permutations of the tensor factors. In this work, we describe a similar duality theory for tensor powers of Clifford unitaries. The Clifford group is a central object in many subfields of quantum information, most prominently in the theory of fault-tolerance. The duality theory has a simple and clean description in terms of finite geometries. We demonstrate its effectiveness in several applications: (1) We resolve an open problem in quantum property testing by showing that "stabilizerness" is efficiently testable: There is a protocol that, given access to six copies of an unknown state, can determine whether it is a stabilizer state, or whether it is far away from the set of stabilizer states. We give a related membership test for the Clifford group. (2) We find that tensor powers of stabilizer states have an increased symmetry group. We provide corresponding de Finetti theorems, showing that the reductions of arbitrary states with this symmetry are well-approximated by mixtures of stabilizer tensor powers (in some cases, exponentially well). (3) We show that the distance of a pure state to the set of stabilizers can be lower-bounded in terms of the sum-negativity of its Wigner function. This gives a new quantitative meaning to the sum-negativity (and the related mana) -- a measure relevant to fault-tolerant quantum computation. The result constitutes a robust generalization of the discrete Hudson theorem. (4) We show that complex projective designs of arbitrary order can be obtained from a finite number (independent of the number of qudits) of Clifford orbits. To prove this result, we give explicit formulas for arbitrary moments of random stabilizer states.Comment: 60 pages, 2 figure

    Recovering Quantum Gates from Few Average Gate Fidelities

    Get PDF
    Characterizing quantum processes is a key task in the development of quantum technologies, especially at the noisy intermediate scale of today’s devices. One method for characterizing processes is randomized benchmarking, which is robust against state preparation and measurement errors and can be used to benchmark Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. In this Letter, we show that the favorable features of both approaches can be combined. For characterizing multiqubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured with respect to random Clifford unitaries. Moreover, for general unital quantum channels, we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity—a figure of merit characterizing the coherence of a process

    Conjugate weight enumerators and invariant theory

    Full text link
    The Galois group of a finite field extension K/FK/F defines a grading on the symmetric algebra of the FF-space KvK^v which we use to introduce the notion of homogeneous conjugate invariants for subgroups G\leq \GL_v(K). If the Weight Enumerator Conjecture holds for a finite representation ρ\rho then the genus-mm conjugate complete weight enumerators of self-dual codes generate the corresponding space of conjugate invariants of the associated genus-mm Clifford-Weil group {\mathcal C}_m(\rho ) \leq \GL_{v^m}(K). This generalisation of a paper by Bannai, Oura and Da Zhao provides new examples of Clifford-Weil orbits that form projective designs

    Low rank matrix recovery from rank one measurements

    Full text link
    We study the recovery of Hermitian low rank matrices XCn×nX \in \mathbb{C}^{n \times n} from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaja_j a_j^* for some measurement vectors a1,...,ama_1,...,a_m, i.e., the measurements are given by yj=tr(Xajaj)y_j = \mathrm{tr}(X a_j a_j^*). The case where the matrix X=xxX=x x^* to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements, yj=x,aj2y_j = |\langle x,a_j\rangle|^2 via the PhaseLift approach, which has been introduced recently. We derive bounds for the number mm of measurements that guarantee successful uniform recovery of Hermitian rank rr matrices, either for the vectors aja_j, j=1,...,mj=1,...,m, being chosen independently at random according to a standard Gaussian distribution, or aja_j being sampled independently from an (approximate) complex projective tt-design with t=4t=4. In the Gaussian case, we require mCrnm \geq C r n measurements, while in the case of 44-designs we need mCrnlog(n)m \geq Cr n \log(n). Our results are uniform in the sense that one random choice of the measurement vectors aja_j guarantees recovery of all rank rr-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 44-designs generalizes and improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.Comment: 24 page

    Duality theory for Clifford tensor powers

    Full text link
    The representation theory of the Clifford group is playing an increasingly prominent role in quantum information theory, including in such diverse use cases as the construction of protocols for quantum system certification, quantum simulation, and quantum cryptography. In these applications, the tensor powers of the defining representation seem particularly important. The representation theory of these tensor powers is understood in two regimes. 1. For odd qudits in the case where the power t is not larger than the number of systems n: Here, a duality theory between the Clifford group and certain discrete orthogonal groups can be used to make fairly explicit statements about the occurring irreps (this theory is related to Howe duality and the eta-correspondence). 2. For qubits: Tensor powers up to t=4 have been analyzed on a case-by-case basis. In this paper, we provide a unified framework for the duality approach that also covers qubit systems. To this end, we translate the notion of rank of symplectic representations to representations of the qubit Clifford group, and generalize the eta correspondence between symplectic and orthogonal groups to a correspondence between the Clifford and certain orthogonal-stochastic groups. As a sample application, we provide a protocol to efficiently implement the complex conjugate of a black-box Clifford unitary evolution.Comment: 47 page

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ı1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag
    corecore