34,094 research outputs found

    Flexible Multiple-Precision Fused Arithmetic Units for Efficient Deep Learning Computation

    Get PDF
    Deep Learning has achieved great success in recent years. In many fields of applications, such as computer vision, biomedical analysis, and natural language processing, deep learning can achieve a performance that is even better than human-level. However, behind this superior performance is the expensive hardware cost required to implement deep learning operations. Deep learning operations are both computation intensive and memory intensive. Many research works in the literature focused on improving the efficiency of deep learning operations. In this thesis, special focus is put on improving deep learning computation and several efficient arithmetic unit architectures are proposed and optimized for deep learning computation. The contents of this thesis can be divided into three parts: (1) the optimization of general-purpose arithmetic units for deep learning computation; (2) the design of deep learning specific arithmetic units; (3) the optimization of deep learning computation using 3D memory architecture. Deep learning models are usually trained on graphics processing unit (GPU) and the computations are done with single-precision floating-point numbers. However, recent works proved that deep learning computation can be accomplished with low precision numbers. The half-precision numbers are becoming more and more popular in deep learning computation due to their lower hardware cost compared to the single-precision numbers. In conventional floating-point arithmetic units, single-precision and beyond are well supported to achieve a better precision. However, for deep learning computation, since the computations are intensive, low precision computation is desired to achieve better throughput. As the popularity of half-precision raises, half-precision operations are also need to be supported. Moreover, the deep learning computation contains many dot-product operations and therefore, the support of mixed-precision dot-product operations can be explored in a multiple-precision architecture. In this thesis, a multiple-precision fused multiply-add (FMA) architecture is proposed. It supports half/single/double/quadruple-precision FMA operations. In addition, it also supports 2-term mixed-precision dot-product operations. Compared to the conventional multiple-precision FMA architecture, the newly added half-precision support and mixed-precision dot-product only bring minor resource overhead. The proposed FMA can be used as general-purpose arithmetic unit. Due to the support of parallel half-precision computations and mixed-precision dot-product computations, it is especially suitable for deep learning computation. For the design of deep learning specific computation unit, more optimizations can be performed. First, a fixed-point and floating-point merged multiply-accumulate (MAC) unit is proposed. As deep learning computation can be accomplished with low precision number formats, the support of high precision floating-point operations can be eliminated. In this design, the half-precision floating-point format is supported to provide a large dynamic range to handle small gradients for deep learning training. For deep learning inference, 8-bit fixed-point 2-term dot-product computation is supported. Second, a flexible multiple-precision MAC unit architecture is proposed. The proposed MAC unit supports both fixed-point operations and floating-point operations. For floating-point format, the proposed unit supports one 16-bit MAC operation or sum of two 8-bit multiplications plus a 16-bit addend. To make the proposed MAC unit more versatile, the bit-width of exponent and mantissa can be flexibly exchanged. By setting the bit-width of exponent to zero, the proposed MAC unit also supports fixed-point operations. For fixed-point format, the proposed unit supports one 16-bit MAC or sum of two 8-bit multiplications plus a 16-bit addend. Moreover, the proposed unit can be further divided to support sum of four 4-bit multiplications plus a 16-bit addend. At the lowest precision, the proposed MAC unit supports accumulating of eight 1-bit logic AND operations to enable the support of binary neural networks. Finally, a MAC architecture based on the posit format, a promising numerical format in deep learning computation, is proposed to facilitate the use of posit format in deep learning computation. In addition to the above mention arithmetic units, an improved hybrid memory cube (HMC) architecture is proposed for weight-sharing deep neural network processing. By modifying the HMC instruction set and HMC logic layer, the major part of the deep learning computation can be accomplished inside memory. The proposed design reduces the memory bandwidth requirements and thus reduces the energy consumed by memory data transfer
    • …
    corecore