26 research outputs found

    Low power output-capacitorless class-AB CMOS LDO regulator

    Get PDF
    Peer ReviewedPostprint (published version

    FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

    Get PDF
    A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of 433.80 μV/mA and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of 1 μs. The total current consumption is 17.88 μA (for a 0.9 V supply voltage).Ministerio de Economía y Competitividad TEC2015-71072-C3-3-RConsejería de Economía, Innovación y Ciencia. Junta de Andalucía P12-TIC-186

    Output-Capacitorless CMOS LDO Regulator Based on High Slew-Rate Current-Mode Transconductance Amplifier

    Get PDF
    A low quiescent current output-capacitorless CMOS LDO regulator based on a high slew-rate current-mode transconductance amplifier (CTA) as an error amplifier is presented. Load transient characteristic of the proposed LDO is improved even at low quiescent currents, by using a local common-mode feedback (LCMFB) in the proposed CTA. This provides an increase in the order of transfer characteristic of the circuit, thereby enhancing the slew-rate at the gate of pass transistor. The proposed CTA-based LDO topology has been designed and post-layout simulated in HSPICE, in a 0.18 μm CMOS process to supply a load current between 0-100 mA. Postlayout simulation results reveal that the proposed LDO is stable without any internal compensation strategy and with on-chip output capacitor or lumped parasitic capacitances at the output node between 10-100 pF.Postprint (published version

    Development of high-performance low-dropout regulators for SoC applications.

    Get PDF
    Or, Pui Ying."July 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references.Abstracts in English and Chinese.AcknowledgmentsTable of ContentList of FiguresList of TablesList of PublicationsChapter Chapter 1 - --- Background of LDO ResearchChapter 1.1 --- Structure of a LDO --- p.1-1Chapter 1.2 --- Principle of Operation of LDO --- p.1-2Chapter 1.3 --- Steady-State Specification of LDO --- p.1-3Chapter 1.4 --- High-Frequency Specification of LDO --- p.1-3Chapter 1.5 --- Dynamic Specification of LDO --- p.1-4Chapter 1.6 --- An Advanced LDO Structure --- p.1-4Chapter 1.7 --- Contribution and Outline of the Thesis --- p.1-5References --- p.1-6Chapter Chapter 2 - --- PSRR AnalysisChapter 2.1 --- Modeling of the PSRR of LDO --- p.2-3Chapter 2.2 --- Analysis of LDO Circuit Using Proposed Modeling --- p.2-6Chapter 2.3 --- Conclusion of Chapter --- p.2-12References --- p.2-13Chapter Chapter 3- --- An Output-Capacitorless LDO with Direct Voltage-Spike DetectionChapter 3.1 --- Analysis of Output-Capacitorless LDO --- p.3-5Chapter 3.2 --- LDO with Proposed Voltage-Spike Detection Circuit --- p.3-7Chapter 3.3 --- Experimental Results --- p.3-15Chapter 3.4 --- Conclusion of Chapter --- p.3-21References --- p.3-22Chapter Chapter 4 - --- A LDO with Impedance Adjustment and Loop-Gain Boosting TechniqueChapter 4.1 --- Proposed LDO --- p.4-3Chapter 4.2 --- Experimental Results --- p.4-7Chapter 4.3 --- Comparison --- p.4-11Chapter 4.4 --- Conclusion of Chapter --- p.4-12Reference --- p.4-13Chapter Chapter 5 - --- Conclusion and Future Wor

    Output-capacitorless segmented low-dropout voltage regulator with controlled pass transistors

    Get PDF
    This article presents a low quiescent current output-capacitorless quasi-digital complementary metal-oxide-semiconductor (CMOS) low-dropout (LDO) voltage regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is segmented into two smaller sizes based on a proposed segmentation criterion, which considers the maximum output voltage transient variations due to the load transient to different load current steps to find the suitable current boundary for segmentation. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Furthermore, this situation is the worst case for stability requirements of the LDO. Therefore, using one smaller transistor for low load currents and another one larger for higher currents, a proper trade-off between output variations, complexity, and power dissipation is achieved. The proposed LDO regulator has been designed and post-simulated in HSPICE in a 0.18¿µm CMOS process to supply a stable load current between 0 and 100¿mA with a 40¿pF on-chip output capacitor, while consuming 4.8¿µA quiescent current. The dropout voltage of the LDO is set to 200¿mV for 1.8¿V input voltage. The results reveal an improvement of approximately 53% and 25% on the output voltage variations and settling time, respectively.Peer ReviewedPostprint (author's final draft

    128 mA CMOS LDO with 108 db PSRR at 2.4 MHz frequency

    Get PDF
    A low dropout (LDO) voltage regulator with high power supply rejection ratio (PSRR) and low temperature coefficient (TC) is presented in this paper. Large 1µF off-chip load capacitor is used to achieve the high PSRR. However, this decreases the gain and pushes the LDO’s output pole to lower frequency causing the circuit to become unstable. The proposed LDO uses rail-to-rail folded cascode amplifier to compensate the gain and stability problems. 2nd order curvature characteristic is used in bandgap voltage reference circuit that is applied at the input of the amplifier to minimize the TC. The characteristic is achieved by implementing MOSFET transistors operate in weak and strong inversions. The LDO is designed using 0.18µm CMOS technology and achieves a constant 1.8V output voltage for input voltages from 3.2V to 5V and load current up to a 128mA at temperature between -40°C to 125°C. The proposed LDO is targeted for RF application which has stringent requirement on noise rejection over a broad range of frequency

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    The use of output-capacitorless class-AB CMOS low-dropout regulator for power management

    Get PDF
    Peer ReviewedPostprint (published version

    Design of low-dropout regulator for ultra low power on-chip applications

    Get PDF
    Low Drop Out (LDO) voltage regulators are commonly used to supply low-voltage digital circuits such as microprocessor cores. These digital circuits normally are continuously changing from one mode of operation to another. Therefore, the load demand can change rapidly resulting in large voltage transients at the output of the regulator which can adversely affect the digital circuitry. In this Master's Thesis, design topologies and challenges of very low-power fully integrated On-Chip Low-Dropout (LDO) regulators have been analyzed. Instead of conventional LDO which makes use of a large external capacitor to have better dynamic response and stability, a CapacitorLess LDO (CL-LDO) is chosen on considerations of smaller area. The most challenging part of designing this kind of regulator is achieving high current efficiency by reducing the quiescent current while ensuring good stability response as well as good regulation performance. Thus, different circuit techniques must be carefully added in order to balance the lack of the large external capacitor having the minimum impact on system efficiency. This work focuses on designing a fully integrated low-dropout regulator with good dynamic performance, high regulation performance and ultra-low power consumption. The stability is achieved by the use of two pole-splitting techniques, namely Cascode and Nested-Miller compensation. The good dynamic response with low quiescent current are achieved by the use of an adaptive biasing circuit, a gm-boost circuit and adaptive power transistor architecture
    corecore