129 research outputs found

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    TelosRFID an ad-hoc wireless networking capable multi-protocol RFID reader system

    Get PDF
    Radio Frequency IDentification (RFID) is rapidly being adopted as a powerful tool used in object tracking access control, telemedicine and inventory management. Its basic architecture endows reader devices with the capability to wirelessly read stored data off of RFID tags. Because of competing standards, there is no unified air protocol for RFID communication. The proliferation of competing standards, paired with the proprietary nature of commercial readers, can make maintaining and upgrading an RFID infrastructure expensive and time-consuming. Part of the solution that this thesis proposes is an RFID reader which supports custom air protocol implementations. To further reduce the costs associated with the adoption of a new infrastructure, RFID readers would benefit from supporting ad-hoc wireless networking. This feature mitigates the need for an installed infrastructure and facilitates immediate deployment of RFID systems. The development of a multi-protocol RFID reader with ad-hoc wireless capabilities will be a boon for both the commercial and academic sectors. This thesis outlines the design of an ad-hoc wireless networking capable multi-protocol RFID reader system called TelosRFID. The name TelosRFID stems from the system\u27s combination of Crossbow Telos rev. B (TelosB) ZigBee motes with a custom 13.56MHz RFID reader board. The TelosRFID reader board is a custom hardware device that can communicate with 13.56MHz RFID tags. It runs custom firmware in order to control tag communications, manage tag presence monitoring, and relay tag information through the ZigBee network (via its attached TelosB mote.) The system is designed to be demonstratably useful. Its functionality can be visibly confirmed, and configuration errors are easily detected at every component in the system. This framework provides a reliable and established baseline for future enhancements to the system\u27s feature set
    • …
    corecore