2,740 research outputs found

    The Question of Spectrum: Technology, Management, and Regime Change

    Get PDF
    There is general agreement that the traditional command-and-control regulation of radio spectrum by the FCC (and NTIA) has failed. There is no general agreement on which regime should succeed it. Property rights advocates take Ronald Coase's advice that spectrum licenses should be sold off and traded in secondary markets, like any other assets. Commons advocates argue that new technologies cannot be accommodated by a licensing regime (either traditional or property rights) and that a commons regime leads to the most efficient means to deliver useful spectrum to the American public. This article reviews the scholarly history of this controversy, outlines the revolution of FCC thinking, and parses the question of property rights vs. commons into four distinct parts: new technology, spectrum uses, spectrum management, and the overarching legal regime. Advocates on both sides find much to agree about on the first three factors; the disagreement is focused on the choice of overarching regime to most efficiently and effectively make spectrum and its applications available to the American public. There are two feasible regime choices: a property rights regime and a mixed licensed/commons regime subject to regulation. The regime choice depends upon four factors: dispute resolution, transactions costs, tragedies of the commons and anticommons, and flexibility to changing technologies and demands. Each regime is described and analyzed against these four factors. With regard to pure transactions costs, commons may hold an advantage but it appears quite small. For all other factors, the property rights regime holds very substantial advantages relative to the mixed regime. I conclude that the choice comes down to markets vs. regulation as mechanism for allocating resources.

    Development of a Nanosatellite Software Defined Radio Communications System

    Get PDF
    Communications systems designed with application-specific integrated circuit (ASIC) technology suffer from one very significant disadvantage - the integrated circuits do not possess the ability of programmability. However, Software Defined Radio’s (SDR’s) integrated with Field Programmable Gate Arrays (FPGA) provide an opportunity to update the communication system on nanosatellites (which are physically difficult to access) due to their capability of performing signal processing in software. SDR signal processing is performed in software on reprogrammable elements such as FPGA’s. Applying this technique to nanosatellite communications systems will optimize the operations of the hardware, and increase the flexibility of the system. In this research a transceiver algorithm for a nanosatellite software defined radio communications is designed. The developed design is capable of modulation of data to transmit information and demodulation of data to receive information. The transceiver algorithm also works at different baud rates. The design implementation was successfully tested with FPGA-based hardware to demonstrate feasibility of the transceiver design with a hardware platform suitable for SDR implementation

    Design Examples For Second Generation Current Controlled Current Conveyors And Their Applications In 28nm Process

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2013Bu çalışmada, gerilim modlu devrelere kıyasla sahip oldukları üstün yanlarından yararlanılarak akım modlu devrelerden ikinci kuşak akım kontrollü akım taşıyıcı yapılarının tasarımı ve örnek devrelerin uygulamalarının 28nm CMOS prosesinde gerçeklemeleri yapılmıştır. Çalışmaya öncelikle karmaşıklaşan haberleşme ihtiyacının meydana getirdiği sorunlar incelenerek başlanmıştır. Yeni standartlara uygun ve haberleşme alanında var olan problemlere çözüm öneren yapıların incelemesi yapılmış ve önerilecek devre yapısının sağlaması gereken özellikler belirlenmiştir. Hedeflenen özelliklerin belirlenmesinin ardından tasarımı yapılacak akım kontrollü akım taşıyıcı yapıları teorik incelemeleri ile verilmiş ve karakteristik özellikleri gözlenmiştir. Daha sonra tasarımı yapılan devre yapılarının uygulamaları olarak frekans atik filtre yapısı ile çok modlu filtre yapısı gerçeklenmiş ve benzetim sonuçları gözlenmiştir. Son olarak elde edilen yapıların serim çizimleri gerçeklenmiş ve sonuçlara etkileri gözlenmiştir. Tasarımı yapılan devreler 28nm prosesinde gerçeklenen ve önerilen aktif filtreler olması açısından önemlidir.In this study, due to their advantages over voltage mode circuits, a current mode circuit second generation current controlled current conveyors design and their applications in 28nm CMOS process realized. Initial effort was put on the investigation of current problems in communication environment and standards. With repect to literature studies and investigations, specification of the circuit to be designed defined to provide alternative sollutions. Following to this, theoretic investigations of the circuits are investigated and their characteristics are examined with the simulations. After the design of current mode circuits, frequency agile filter implementation and multi response filter implementations are selected as the application part of this study. Filter structures are realized and their characteristics observed. As the last step of this work, layout and post layout phases are executed and effects of these steps are obtained. The designed circuits and their filter applications are important since they are the first implementations in 28nm CMOS process and they provide alternative solutions to multi mode, multi response communication standards.Yüksek LisansM.Sc

    Predictable Reliability In Inter-Vehicle Communications

    Get PDF
    Predictably reliable communication in wireless networked sensing and control systems (WSC) is a basic enabler for performance guarantee. Yet current research efforts are either focus on maximizing throughput or based on inaccurate interference modelling methods, which yield unsatisfactory results in terms of communication reliability. In this dissertation, we discuss techniques that enable reliable communication in both traditional wireless sensor networks and highly mobile inter-vehicle communication networks. We focus our discussion on traditional wireless sensor networks in Chapter 2 where we discuss mechanisms that enable predictable and reliable communications with no centralized infrastructures. With the promising results in Chapter 2, we extend our methods to inter-vehicle communication networks in Chapter 3. We focus on the broadcast communication paradigm and the unique challenges in applying the PRK interference model into broadcast problems in highly mobile inter-vehicle communication networks. While Chapter 2 and Chapter 3 focus on average reliability, we switch our problem to a more challenging aspect: guaranteeing short-term per-packet reception probability in Chapter 4. Specifically, we describe the PRKS protocol in Chapter 2 which considers unicast transmission paradigm in traditional static wireless sensor networks. PRKS uses the PRK interference model as a basis for interference relation identification that captures characteristics of wireless communications. For communication reliability control, we design a controller that runs at each link receiver and is able to control the average link reliability to be no lower than an application requirement as well as minimizing reliability variation. We further evaluate PRKS with extensive ns-3 simulations. The CPS protocol described in Chapter 3 considers an one-hop broadcast problem in multi-hop inter-vehicle communication networks. We analyze the challenges of applying the PRK model in this particular setting and propose an approximated PRK model, i.e., gPRK model, that addresses the challenges. We further design principles that CPS uses to instantiate the gPRK model in inter-vehicle communications. We implement the CPS scheduling framework in an integrated platform with SUMO and ns-3 to evaluate our design. In Chapter 4, we conservatively estimate the background interference plus noise while nodes are receiving packets. In the meantime, receivers decide minimum power levels their sender should use and feedback their decisions to their senders. Senders fuse feedbacks and choose a power level that guarantees expected packet reception probability at each receivers’ side. We notice in our evaluation that guaranteeing short-term reliability causes extra concurrency loss

    Advances in Reconfigurable Antenna Systems Facilitated by Innovative Technologies

    Full text link
    © 2013 IEEE. Future fifth generation (5G) wireless platforms will require reconfigurable antenna systems to meet their performance requirements in compact, light-weight, and cost-effective packages. Recent advances in reconfigurable radiating and receiving structures have been enabled by a variety of innovative technology solutions. Examples of reconfigurable partially reflective surface antennas, reconfigurable filtennas, reconfigurable Huygens dipole antennas, and reconfigurable feeding network-enabled antennas are presented and discussed. They represent novel classes of frequency, pattern, polarization, and beam-direction reconfigurable systems realized by the innovative combinations of radiating structures and circuit components

    Predictable Reliability In Inter-Vehicle Communications

    Get PDF
    Predictably reliable communication in wireless networked sensing and control systems (WSC) is a basic enabler for performance guarantee. Yet current research efforts are either focus on maximizing throughput or based on inaccurate interference modelling methods, which yield unsatisfactory results in terms of communication reliability. In this dissertation, we discuss techniques that enable reliable communication in both traditional wireless sensor networks and highly mobile inter-vehicle communication networks. We focus our discussion on traditional wireless sensor networks in Chapter 2 where we discuss mechanisms that enable predictable and reliable communications with no centralized infrastructures. With the promising results in Chapter 2, we extend our methods to inter-vehicle communication networks in Chapter 3. We focus on the broadcast communication paradigm and the unique challenges in applying the PRK interference model into broadcast problems in highly mobile inter-vehicle communication networks. While Chapter 2 and Chapter 3 focus on average reliability, we switch our problem to a more challenging aspect: guaranteeing short-term per-packet reception probability in Chapter 4. Specifically, we describe the PRKS protocol in Chapter 2 which considers unicast transmission paradigm in traditional static wireless sensor networks. PRKS uses the PRK interference model as a basis for interference relation identification that captures characteristics of wireless communications. For communication reliability control, we design a controller that runs at each link receiver and is able to control the average link reliability to be no lower than an application requirement as well as minimizing reliability variation. We further evaluate PRKS with extensive ns-3 simulations. The CPS protocol described in Chapter 3 considers an one-hop broadcast problem in multi-hop inter-vehicle communication networks. We analyze the challenges of applying the PRK model in this particular setting and propose an approximated PRK model, i.e., gPRK model, that addresses the challenges. We further design principles that CPS uses to instantiate the gPRK model in inter-vehicle communications. We implement the CPS scheduling framework in an integrated platform with SUMO and ns-3 to evaluate our design. In Chapter 4, we conservatively estimate the background interference plus noise while nodes are receiving packets. In the meantime, receivers decide minimum power levels their sender should use and feedback their decisions to their senders. Senders fuse feedbacks and choose a power level that guarantees expected packet reception probability at each receivers’ side. We notice in our evaluation that guaranteeing short-term reliability causes extra concurrency loss
    corecore