264 research outputs found

    Low-energy standby-sparing for hard real-time systems

    No full text
    Time-redundancy techniques are commonly used in real-time systems to achieve fault tolerance without incurring high energy overhead. However, reliability requirements of hard real-time systems that are used in safety-critical applications are so stringent that time-redundancy techniques are sometimes unable to achieve them. Standby sparing as a hardwareredundancy technique can be used to meet high reliability requirements of safety-critical applications. However, conventional standby-sparing techniques are not suitable for lowenergy hard real-time systems as they either impose considerable energy overheads or are not proper for hard timing constraints. In this paper we provide a technique to use standby sparing for hard real-time systems with limited energy budgets. The principal contribution of this work is an online energymanagement technique which is specifically developed for standby-sparing systems that are used in hard real-time applications. This technique operates at runtime and exploits dynamic slacks to reduce the energy consumption while guaranteeing hard deadlines. We compared the low-energy standby-sparing (LESS) system with a low-energy timeredundancy system (from a previous work). The results show that for relaxed time constraints, the LESS system is more reliable and provides about 26% energy saving as compared to the time-redundancy system. For tight deadlines when the timeredundancy system is not sufficiently reliable (for safety-critical application), the LESS system preserves its reliability but with about 49% more energy consumptio

    Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient Real-Time Systems

    No full text
    Recently the trade-off between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack time to increase the fault-tolerance by performing recovery executions, DVS exploits slack time to save energy. Therefore we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the usage of information redundancy to solve this problem. We demonstrate through analytical and experimental studies that it is possible to achieve both higher transient fault-tolerance (tolerance to single event upsets (SEU)) and less energy using a combination of information and time redundancy when compared with using time redundancy alone. The second aim of this paper is to analyze the interplay of transient-fault tolerance (SEU-tolerance) and adaptive body biasing (ABB) used to reduce static leakage energy, which has not been addressed in previous studies. We show that the same technique (i.e. the combination of time and information redundancy) is applicable to ABB-enabled systems and provides more advantages than time redundancy alone

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Energy harvesting earliest deadline first scheduling algorithm for increasing lifetime of real time systems

    Get PDF
    In this paper, a new approach for energy minimization in energy harvesting real time systems has been investigated. Lifetime of a real time systems is depend upon its battery life.  Energy is a parameter by which the lifetime of system can be enhanced.  To work continuously and successively, energy harvesting is used as a regular source of energy. EDF (Earliest Deadline First) is a traditional real time tasks scheduling algorithm and DVS (Dynamic Voltage Scaling) is used for reducing energy consumption. In this paper, we propose an Energy Harvesting Earliest Deadline First (EH-EDF) scheduling algorithm for increasing lifetime of real time systems using DVS for reducing energy consumption and EDF for tasks scheduling with energy harvesting as regular energy supply. Our experimental results show that the proposed approach perform better to reduce energy consumption and increases the system lifetime as compared with existing approaches.

    Dual-Processor Design of Energy Efficient Fault-Tolerant System

    Get PDF
    A popular approach to guarantee fault tolerance in safety-critical applications is to run the application on two processors. A checkpoint is inserted at the comple- tion of the primary copy. If there is no fault, the sec- ondary processor terminates its execution. Otherwise, should the fault occur, the second processor continues and completes the application before its deadline. In this paper, we study the energy efficiency of such dual- processor system. Specifically, we first derive an opti- mal static voltage scaling policy for single periodic task. We then extend it to multiple periodic tasks based on worst case execution time (WCET) analysis. Finally, we discuss how to further reduce system’s energy con- sumption at run time by taking advantage of the actual execution time which is less than the WCET. Simula- tion on real-life benchmark applications shows that our technique can save up to 80% energy while still provid- ing fault tolerance

    Dynamic voltage scaling algorithms for soft and hard real-time system

    Get PDF
    Dynamic Voltage Scaling (DVS) has not been investigated completely for further minimizing the energy consumption of microprocessor and prolonging the operational life of real-time systems. In this dissertation, the workload prediction based DVS and the offline convex optimization based DVS for soft and hard real-time systems are investigated, respectively. The proposed algorithms of soft and hard real-time systems are implemented on a small scaled wireless sensor network (WSN) and a simulation model, respectively

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper
    • …
    corecore