216 research outputs found

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    An Efficient ICI Cancellation Technique for OFDM Communication Systems

    Get PDF
    A well known problem of orthogonal frequency division multiplexing (OFDM), however, is its sensitivity to frequency offset between the transmitted and received signals, which may be caused by Doppler shift in the channel, or by the difference between the transmitter and receiver local oscillator frequencies. This carrier frequency offset causes loss of orthogonality between sub carriers and the signals transmitted on each carrier are not independent of each other. The orthogonality of the carriers is no longer maintained, which results in inter-carrier interference (ICI). The undesired ICI degrades the performance of the system. Depending on the Doppler spread in the channel and the block length chosen for transmission, ICI can potentially cause a severe deterioration of quality of service (QOS) in OFDM systems. ICI mitigation techniques are essential in improving the performance of an OFDM system in an environment which induces frequency offset error in the transmitted signal. The comparisons of these schemes in terms of various parameters will be useful in determining the choice of ICI mitigation techniques for different applications and mobile environments. This project investigates an efficient ICI cancellation method termed ICI self-cancellation scheme for combating the impact of ICI on OFDM systems. The ICI self-cancellation scheme is a technique in which redundant data is transmitted onto adjacent sub-carriers such that the ICI between adjacent sub-carriers cancels out at the receiver. The main idea is one data symbol is modulated onto a group of adjacent subcarriers with a group of weighting coefficients. By doing so, the ICI signals generated within a group can be ―self-cancelled‖ each other. At the receiver side, by linearly combining the received signals on these subcarriers with proposed coefficients, the residual ICI contained in the received signals can then be further reduced. The carrier-to-interference power ratio (CIR) can be increased by 15 and 30 dB when the group size is two or three, respectively, for a channel with a constant frequency offset. Although the proposed scheme causes a reduction in bandwidth efficiency, it can be compensated, by using larger signal alphabet sizes in modulation. The average carrier-to-interference power ratio (CIR) is used as the ICI level indicator, and a theoretical CIR expression is derived for the proposed scheme. The proposed scheme provides significant CIR improvement, which has been studied theoretically and supported by simulations. Simulation results show that under the condition of the same bandwidth efficiency and larger frequency offsets, the proposed OFDM system using the ICI self-cancellation scheme performs much better than standard OFDM systems in AWGN channel with large Doppler frequencies. In addition, since no channel equalization is needed for reducing ICI, the proposed scheme is therefore beneficial in implementation issue without increasing system complexity

    High Data Rate Coherent Optical OFDM System for Long-Haul Transmission

    Get PDF
    The growth in internet traffic has driven the increase in demand for bandwidth and high data rates. Optical Orthogonal Frequency Division Multiplexing is considered as a promising technology to satisfy the increased demand for bandwidth in broadband services. Optical OFDM received a great attention after proposing it as a modulation technique for the long-haul transmission in both direct and coherent detection. However, Coherent Optical OFDM (CO-OFDM) is the next generation technology for the optical communications, since it integrates the advantages of both coherent systems and OFDM systems. It has the ability to overcome many optical fiber restrictions such as chromatic dispersion (CD) and polarization mode dispersion (PMD). Moreover, Integrating the Coherent Optical OFDM with Wavelength Division Multiplexing (WDM) systems will provide the transmission system with a high bandwidth, a significant data rates, and a high spectral efficiency without increasing the cost or the complexity of the system. WDM systems help to enhance the capacity and the data rate of the system by sending multiple wavelengths over a single fiber. This research focuses on the implementation and performance analysis of high data rate coherent optical OFDM for long-haul transmission. The study starts with a single user and extends to the implanting of the WDM system. OptiSystem-12 simulation tool is fully used to design and implement the system. The system utilizes to carry range of data rates start from 10 Gbps to 1 Tbps, 4-QAM (2 bits-per-symbol) is used a modulation type for the OFDM signal, Optical I/Q modulation is employed at the transmitter and coherent detection is employed at the receiver. The performance of the system is studied and analyzed system in terms of Bit-Error-Rate (BER), the effect of the transmission distance on the Optical-Signal-to-Noise-Ratio (OSNR), and the relation of BER and OSNR with regard to the transmission distance

    Simulation of wireless communication system using OFDM principle

    Get PDF
    FDMA, TDMA and CDMA are the well known multiplexing techniques used in wireless communication systems. While working with the wireless systems using these techniques various problems encountered are (1) multi-path fading (2) time dispersion which lead to intersymbol interference (ISI) (3) lower bit rate capacity (4) requirement of larger transmit power for high bit rate and (5) less spectral efficiency. The use of orthogonal frequency division multiplexing (OFDM) technique provides better solution for the above mentioned problems. The benefits of OFDM are high spectral efficiency, resiliency of RF interference, and lower multi-path distortion. OFDM is a powerful modulation technique that is capable of high data rate and is able to eliminate ISI. The use of FFT technique to implement modulation and demodulation functions makes it computationally more efficient

    Peak-to-Average Power Ratio Reduction of DOCSIS 3.1 Downstream Signals

    Get PDF
    Tone reservation (TR) is an attractive and widely used method for peak-to-average power ratio (PAPR) reduction of orthogonal frequency division multiplexing (OFDM) signals, where both transmitter and receiver agree upon a number of subcarriers or tones to be reserved to generate a peak canceling signal that can reduce the peak power of the transmitted signals. The tones are selected to be mutually exclusive with the tones used for data transmission, which allows the receiver to extract the data symbols without distortions. This thesis presents two novel PAPR reduction algorithms for OFDM signals based on the TR principle, which do not distort the transmitted signals. The first proposed algorithm is performed in the time domain, whereas the second algorithm is a new clipping-and-filtering method. Both algorithms consist of two stages. The first stage, which is done off-line, creates a set of canceling signals based on the settings of the OFDM system. In particular, these signals are constructed to cancel signals at different levels of maximum instantaneous power that are above a predefined threshold. The second stage, which is online and iterative, reduces the signal peaks by using the canceling signals constructed in the first stage. The precalculated canceling signals can be updated when different tone sets are selected for data transmission, accommodating many practical applications. Simulation results show that the proposed algorithms achieve slightly better PAPR reduction performance than the conventional algorithms. Moreover, such performance is achieved with much lower computational complexity in terms of numbers of multiplications and additions per iteration. Among the two proposed algorithms, the time-domain algorithm gives the best peak reduction performance but the clipping-and-filtering algorithm requires considerably less number of multiplications per iteration and can be efficiently implemented using the fast Fourier transform (FFT)/inverse fast Fourier transform (IFFT) structure

    IR-UWB and OFDM-UWB Transceiver Nodes for Communication and Positioning Purposes

    Get PDF
    Résumé Ultra-wideband (UWB) a suscité l'intérêt de chercheurs et de l'industrie en raison de ses nombreux avantages tels que la faible probabilité d'interception et de la possibilité de combiner la communication des données de positionnement dans un seul système. Il existe plusieurs UWB couche physique (PHY) présentées initialement à la norme IEEE qui convergent en deux propositions principales: des porte-UWB ou Orthogonal Frequency-Division Multiplexing (OFDM-UWB), et à court d'impulsion porteuse à-UWB ou Impulse Radio-(IR-UWB). Une des plus grandes tâches difficiles pour les chercheurs est de nos jours la conception d'émetteurs-récepteurs UWB optimisés qui satisfont à des conditions rigoureuses, dont la simplicité caractéristiques large bande, à faible coût et de conception. Des études antérieures ont montré que les récepteurs à conversion directe basée sur Wave-radio interféromètre (WRI) circuits représentent un bon candidat pour les applications UWB. Circuits IRG ont plusieurs avantages tels que l'exploitation à large bande, à faible coût et la simplicité. Des travaux antérieurs sur l'IRG circuit, cependant, a enquêté sur le circuit de l'IRG sur la base du concept de porteuse unique signaux (par exemple, les signaux sinusoïdaux). L'objectif de ce projet est de fournir les résultats de conception, de simulation, de mise en oeuvre et le test d'un émetteur-récepteur WRI basé sur ce que peut être utilisé comme un noeud ou un pico-réseau dans un détecteur sans fil / réseau de données. Nous allons passer par les étapes de conception et de mise en oeuvre de propositions UWB deux: IR-UWB et OFDM-UWB. Pour la proposition porteuse à nous concentrer sur la conception et la mise en oeuvre de l'émetteur-récepteur en intégrant les opérations de transmission / réception dans un prototype unique, alors que pour la proposition des porte-nous concevoir et mettre en oeuvre l'émetteur-récepteur avec le circuit de l'IRG dans le récepteur seulement utilisé en tant que convertisseur abaisseur directe. Résultats expérimentaux, de simulation et d'analyse ont été obtenus et sont présentés dans cette thèse.----------Abstract Ultra-wideband (UWB) technology has attracted interest from both researchers and the industry due to its numerous advantages such as low probability of interception and the possibility of combining data communication with positioning in a single system. There are several different UWB physical layer (PHY) proposals originally submitted to IEEE which converged into two main proposals: carrier‐based UWB or Orthogonal-Frequency Division Multiplexing (OFDM‐UWB), and short‐pulse carrierless‐UWB or Impulse-Radio (IR-UWB). One of the biggest challenging tasks for researchers nowadays is the design of optimized UWB transceivers that would satisfy rigorous conditions, among which wideband characteristics, low-cost and design simplicity. Previous studies have shown that direct-conversion receivers based on Wave-Radio Interferometer (WRI) circuits represent a suitable candidate for UWB applications. WRI circuits have several advantages such as wideband operation, low cost, and simplicity. Previous works on WRI circuit, however, investigated the WRI circuit based on the concept of single-carrier signals (i.e., sinusoidal signals). The objective of this project is to provide the design, simulation, implementation and testing results of a WRI-based transceiver that can be utilized as a node or a piconet in a wireless sensor/data network. We will go through the design and implementation steps for both UWB proposals: IR-UWB and OFDM-UWB. For the carrierless proposal we will focus on designing and implementing the transceiver by integrating the transmitter/receiver operations in a single prototype, while for the carrier‐based proposal we will design and implement the transceiver with the WRI circuit in the receiver only utilized as a direct downconverter

    Inter Carrier Interference Cancellation in OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. A well-known problem of OFDM is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference (ICI) in the OFDM symbol. This project investigates two methods for combating the effects of ICI: ICI self-cancellation (SC), and extended Kalman filter (EKF) method. These two methods are compared in terms of bit error rate performance, bandwidth efficiency, and computational complexity. Through simulations, it is shown that the two techniques are effective in mitigating the effects of ICI. For high values of the frequency offset and for higher order modulation schemes, EKF method performs better than the SC method
    corecore