2,318 research outputs found

    Low overhead concurrency control for partitioned main memory databases

    Get PDF
    Database partitioning is a technique for improving the performance of distributed OLTP databases, since "single partition" transactions that access data on one partition do not need coordination with other partitions. For workloads that are amenable to partitioning, some argue that transactions should be executed serially on each partition without any concurrency at all. This strategy makes sense for a main memory database where there are no disk or user stalls, since the CPU can be fully utilized and the overhead of traditional concurrency control, such as two-phase locking, can be avoided. Unfortunately, many OLTP applications have some transactions which access multiple partitions. This introduces network stalls in order to coordinate distributed transactions, which will limit the performance of a database that does not allow concurrency. In this paper, we compare two low overhead concurrency control schemes that allow partitions to work on other transactions during network stalls, yet have little cost in the common case when concurrency is not needed. The first is a light-weight locking scheme, and the second is an even lighter-weight type of speculative concurrency control that avoids the overhead of tracking reads and writes, but sometimes performs work that eventually must be undone. We quantify the range of workloads over which each technique is beneficial, showing that speculative concurrency control generally outperforms locking as long as there are few aborts or few distributed transactions that involve multiple rounds of communication. On a modified TPC-C benchmark, speculative concurrency control can improve throughput relative to the other schemes by up to a factor of two.National Science Foundation (U.S.). (Grant number IIS-0704424)National Science Foundation (U.S.). (Grant number IIS-0845643

    Fast transactions for multicore in-memory databases

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 55-57).Though modern multicore machines have sufficient RAM and processors to manage very large in-memory databases, it is not clear what the best strategy for dividing work among cores is. Should each core handle a data partition, avoiding the overhead of concurrency control for most transactions (at the cost of increasing it for cross-partition transactions)? Or should cores access a shared data structure instead? We investigate this question in the context of a fast in-memory database. We describe a new transactionally consistent database storage engine called MAFLINGO. Its cache-centered data structure design provides excellent base key-value store performance, to which we add a new, cache-friendly serializable protocol and support for running large, read-only transactions on a recent snapshot. On a key-value workload, the resulting system introduces negligible performance overhead as compared to a version of our system with transactional support stripped out, while achieving linear scalability versus the number of cores. It also exhibits linear scalability on TPC-C, a popular transactional benchmark. In addition, we show that a partitioning-based approach ceases to be beneficial if the database cannot be partitioned such that only a small fraction of transactions access multiple partitions, making our shared-everything approach more relevant. Finally, based on a survey of results from the literature, we argue that our implementation substantially outperforms previous main-memory databases on TPC-C benchmarks.by Stephen Lyle Tu.S.M

    Speedy Transactions in Multicore In-Memory Databases

    Get PDF
    Silo is a new in-memory database that achieves excellent performance and scalability on modern multicore machines. Silo was designed from the ground up to use system memory and caches efficiently. For instance, it avoids all centralized contention points, including that of centralized transaction ID assignment. Silo's key contribution is a commit protocol based on optimistic concurrency control that provides serializability while avoiding all shared-memory writes for records that were only read. Though this might seem to complicate the enforcement of a serial order, correct logging and recovery is provided by linking periodically-updated epochs with the commit protocol. Silo provides the same guarantees as any serializable database without unnecessary scalability bottlenecks or much additional latency. Silo achieves almost 700,000 transactions per second on a standard TPC-C workload mix on a 32-core machine, as well as near-linear scalability. Considered per core, this is several times higher than previously reported results.Engineering and Applied Science

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved
    • …
    corecore