131 research outputs found

    Effect on signal-to-noise ratio of splitting the continuous contacts of cuff electrodes into smaller recording areas.

    Get PDF
    BackgroundCuff electrodes have been widely used chronically in different clinical applications. This neural interface has been dominantly used for nerve stimulation while interfering noise is the major issue when employed for recording purposes. Advancements have been made in rejecting extra-neural interference by using continuous ring contacts in tripolar topologies. Ring contacts provide an average of the neural activity, and thus reduce the information retrieved. Splitting these contacts into smaller recording areas could potentially increase the information content. In this study, we investigate the impact of such discretization on the Signal-to-Noise Ratio (SNR). The effect of contacts positioning and an additional short circuited pair of electrodes were also addressed.MethodsDifferent recording configurations using ring, dot, and a mixed of both contacts were studied in vitro in a frog model. An interfering signal was induced in the medium to simulate myoelectric noise. The experimental setup was design in such a way that the only difference between recordings was the configuration used. The inter-session experimental differences were taken care of by a common configuration that allowed normalization between electrode designs.ResultsIt was found that splitting all contacts into small recording areas had negative effects on noise rejection. However, if this is only applied to the central contact creating a mixed tripole configuration, a considerable and statistically significant improvement was observed. Moreover, the signal to noise ratio was equal or larger than what can be achieved with the best known configuration, namely the short circuited tripole. This suggests that for recording purposes, any tripole topology would benefit from splitting the central contact into one or more discrete contacts.ConclusionsOur results showed that a mixed tripole configuration performs better than the configuration including only ring contacts. Therefore, splitting the central ring contact of a cuff electrode into a number of dot contacts not only provides additional information but also an improved SNR. In addition, the effect of an additional pair of short circuited electrodes and the "end effect" observed with the presented method are in line with previous findings by other authors

    Design and Optimization of a Low DC Offset in Implanted System for ENG Recording Based on Velocity Selectivity Method

    Full text link
    The major target of this paper is the design of advance signal processing system based on minimized length of bits required for digital-to-analogy converter (DAC) for velocity selectivity recording (VSR) approach. The main application of this device is peripheral nerves recording (electroneurogram-ENG) by exploring a spectral analysis for the propagation of neural activities in the velocity domain recording using VSR in implantable application. This research adapted a flexible, compact, andnbspenergynbspefficient dc offset removal circuit. An optimization design has been used based on best possible process involving linearity and area is thus suggested. The system process acquired using this approach were characterized as having a 10-bit signal processing for DAC resolution, with 1.4 mA rms output current, with minimum size around 0.02 mm2nbspof chip area, using FPGA board as prototype design. This paper also explores the design temperature vibration in online recording minimization the output DC offset decrease the heat emission which is significantly for long term implementation applications. This study proposed an analysis circuit configuration demonstrate that this approach could achieve a small DC offset error, with small size required

    Printable microscale interfaces for long-term peripheral nerve mapping and precision control

    Get PDF
    The nascent field of bioelectronic medicine seeks to decode and modulate peripheral nervous system signals to obtain therapeutic control of targeted end organs and effectors. Current approaches rely heavily on electrode-based devices, but size scalability, material and microfabrication challenges, limited surgical accessibility, and the biomechanically dynamic implantation environment are significant impediments to developing and deploying advanced peripheral interfacing technologies. Here, we present a microscale implantable device – the nanoclip – for chronic interfacing with fine peripheral nerves in small animal models that begins to meet these constraints. We demonstrate the capability to make stable, high-resolution recordings of behaviorally-linked nerve activity over multi-week timescales. In addition, we show that multi-channel, current-steering-based stimulation can achieve a high degree of functionally-relevant modulatory specificity within the small scale of the device. These results highlight the potential of new microscale design and fabrication techniques for the realization of viable implantable devices for long-term peripheral interfacing.https://www.biorxiv.org/node/801468.fullFirst author draf

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    The Design of a Low Noise, Multi-Channel Recording System for Use in Implanted Peripheral Nerve Interfaces

    Get PDF
    In the development of implantable neural interfaces, the recording of signals from the peripheral nerves is a major challenge. Since the interference from outside the body, other biopotentials, and even random noise can be orders of magnitude larger than the neural signals, a filter network to attenuate the noise and interference is necessary. However, these networks may drastically affect the system performance, especially in recording systems with multiple electrode cuffs (MECs), where a higher number of electrodes leads to complicated circuits. This paper introduces formal analyses of the performance of two commonly used filter networks. To achieve a manageable set of design equations, the state equations of the complete system are simplified. The derived equations help the designer in the task of creating an interface network for specific applications. The noise, crosstalk and common-mode rejection ratio (CMRR) of the recording system are computed as a function of electrode impedance, filter component values and amplifier specifications. The effect of electrode mismatches as an inherent part of any multi-electrode system is also discussed, using measured data taken from a MEC implanted in a sheep. The accuracy of these analyses is then verified by simulations of the complete system. The results indicate good agreement between analytic equations and simulations. This work highlights the critical importance of understanding the effect of interface circuits on the performance of neural recording systems

    An Artefact suppressing fast-recovery myoelectric amplifier

    Get PDF
    An amplifier for recording myoelectric signals using surface electrodes has been developed. The special features are suppression of stimulation artefacts and motion artefacts from electrodes. It is designed for recording of myoelectric signals from a muscle that is being stimulated with short impulses. The artifact suppression is achieved by using fast-recovery instrumentation amplifiers and having a nonlinear feedback loop for automatic compensation of changes in DC-offse

    An Implantable ENG Detector with In-System Velocity Selective Recording (VSR) Capability

    Get PDF
    Detection and classification of electroneurogram (ENG) signals in the peripheral nervous system can be achieved by velocity selective recording (VSR) using multi-electrode arrays. This paper describes an implantable VSR-based ENG recording system representing a significant development in the field since it is the first system of its type that can record naturally evoked ENG and be interfaced wirelessly using a low data rate transcutaneous link. The system consists of two CMOS ASICs one of which is placed close to the multi-electrode cuff array (MEC), whilst the other is mounted close to the wireless link. The digital ASIC provides the signal processing required to detect selectively ENG signals based on velocity. The design makes use of an original architecture that is suitable for implantation and reduces the required data rate for transmission to units placed outside the body. Complete measured electrical data from samples of the ASICs are presented that show that the system has the capability to record signals of amplitude as low as 0.5 μV, which is adequate for the recording of naturally evoked ENG. In addition, measurements of electrically evoked ENG from the explanted sciatic nerves of Xenopus Laevis frogs are presented

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Noise Efficient Integrated Amplifier Designs for Biomedical Applications

    Get PDF
    The recording of neural signals with small monolithically integrated amplifiers is of high interest in research as well as in commercial applications, where it is common to acquire 100 or more channels in parallel. This paper reviews the recent developments in low-noise biomedical amplifier design based on CMOS technology, including lateral bipolar devices. Seven major circuit topology categories are identified and analyzed on a per-channel basis in terms of their noise-efficiency factor (NEF), input-referred absolute noise, current consumption, and area. A historical trend towards lower NEF is observed whilst absolute noise power and current consumption exhibit a widespread over more than five orders of magnitude. The performance of lateral bipolar transistors as amplifier input devices is examined by transistor-level simulations and measurements from five different prototype designs fabricated in 180 nm and 350 nm CMOS technology. The lowest measured noise floor is 9.9 nV/√Hz with a 10 µA bias current, which results in a NEF of 1.2
    corecore