160 research outputs found

    Energy Efficient Execution of POMDP Policies

    Get PDF
    Recent advances in planning techniques for partially observable Markov decision processes have focused on online search techniques and offline point-based value iteration. While these techniques allow practitioners to obtain policies for fairly large problems, they assume that a non-negligible amount of computation can be done between each decision point. In contrast, the recent proliferation of mobile and embedded devices has lead to a surge of applications that could benefit from state of the art planning techniques if they can operate under severe constraints on computational resources. To that effect, we describe two techniques to compile policies into controllers that can be executed by a mere table lookup at each decision point. The first approach compiles policies induced by a set of alpha vectors (such as those obtained by point-based techniques) into approximately equivalent controllers, while the second approach performs a simulation to compile arbitrary policies into approximately equivalent controllers. We also describe an approach to compress controllers by removing redundant and dominated nodes, often yielding smaller and yet better controllers. Further compression and higher value can sometimes be obtained by considering stochastic controllers. The compilation and compression techniques are demonstrated on benchmark problems as well as a mobile application to help persons with Alzheimer's to way-find. The battery consumption of several POMDP policies is compared against finite-state controllers learned using methods introduced in this paper. Experiments performed on the Nexus 4 phone show that finite-state controllers are the least battery consuming POMDP policies

    Quick and Automatic Selection of POMDP Implementations on Mobile Platform Based on Battery Consumption Estimation

    Get PDF
    Partially Observable Markov Decision Process (POMDP) is widely used to model sequential decision making process under uncertainty and incomplete knowledge of the environment. It requires strong computation capability and is thus usually deployed on powerful machine. However, as mobile platforms become more advanced and more popular, the potential has been studied to combine POMDP and mobile in order to provide a broader range of services. And yet a question comes with this trend: how should we implement POMDP on mobile platform so that we can take advantages of mobile features while at the same time avoid being restricted by mobile limitations, such as short battery life, weak CPU, unstable networking connection, and other limited resources. In response to the above question, we first point out that the cases vary by problem nature, accuracy requirements and mobile device models. Rather than pure mathematical analysis, our approach is to run experiments on a mobile device and concentrate on a more specific question: which POMDP implementation is the ``best'' for a particular problem on a particular kind of device. Second, we propose and justify a POMDP implementation criterion mainly based on battery consumption that quantifies ``goodness'' of POMDP implementations in terms of mobile battery depletion rate. Then, we present a mobile battery consumption model that translates CPU and WIFI usage into part of the battery depletion rate in order to greatly accelerate the experiment process. With our mobile battery consumption model, we combine a set of simple benchmark experiments with CPU and WIFI usage data from each POMDP implementation candidate to generate estimated battery depletion rates, as opposed to conducting hours of real battery experiments for each implementation individually. The final result is a ranking of POMDP implementations based on their estimated battery depletion rates. It serves as a guidance for on POMDP implementation selection for mobile developers. We develop a mobile software toolkit to automate the above process. Given basic POMDP problem specifications, a set of POMDP implementation candidates and a simple press on the ``start'' button, the toolkit automatically performs benchmark experiments on the target device on which it is installed, and records CPU and WIFI statistics for each POMDP implementation candidate. It then feeds the data to its embedded mobile battery consumption model and produces an estimated battery depletion rate for each candidate. Finally, the toolkit visualizes the ranking of POMDP implementations for mobile developers' reference. Evaluation is assessed through comparsion between the ranking from estimated battery depletion rate and that from real experimental battery depletion rate. We observe the same ranking out of both, which is also our expectation. What's more, the similarity between estimated battery depletion rate and experimental battery depletion rate measured by cosine-similarity is almost 0.999 where 1 indicates they are exactly the same

    Autonomous Quadcopter Videographer

    Get PDF
    In recent years, the interest in quadcopters as a robotics platform for autonomous photography has increased. This is due to their small size and mobility, which allow them to reach places that are difficult or even impossible for humans. This thesis focuses on the design of an autonomous quadcopter videographer, i.e. a quadcopter capable of capturing good footage of a specific subject. In order to obtain this footage, the system needs to choose appropriate vantage points and control the quadcopter. Skilled human videographers can easily spot good filming locations where the subject and its actions can be seen clearly in the resulting video footage, but translating this knowledge to a robot can be complex. We present an autonomous system implemented on a commercially available quadcopter that achieves this using only the monocular information and an accelerometer. Our system has two vantage point selection strategies: 1) a reactive approach, which moves the robot to a fixed location with respect to the human and 2) the combination of the reactive approach and a POMDP planner that considers the target\u27s movement intentions. We compare the behavior of these two approaches under different target movement scenarios. The results show that the POMDP planner obtains more stable footage with less quadcopter motion

    NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.Peer ReviewedAgha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., Ginting, M. F., Ebadi, K., Anderson, M., Pailevanian, T., Terry, E., Wolf, M., Tagliabue, A., Vaquero, T. S., Palieri, M., Tepsuporn, S., Chang, Y., Kalantari, A., Chavez, F., Lopez, B., Funabiki, N., Miles, G., Touma, T., Buscicchio, A., Tordesillas, J., Alatur, N., Nash, J., Walsh, W., Jung, S., Lee, H., Kanellakis, C., Mayo, J., Harper, S., Kaufmann, M., Dixit, A., Correa, G. J., Lee, C., Gao, J., Merewether, G., Maldonado-Contreras, J., Salhotra, G., Da Silva, M. S., Ramtoula, B., Fakoorian, S., Hatteland, A., Kim, T., Bartlett, T., Stephens, A., Kim, L., Bergh, C., Heiden, E., Lew, T., Cauligi, A., Heywood, T., Kramer, A., Leopold, H. A., Melikyan, H., Choi, H. C., Daftry, S., Toupet, O., Wee, I., Thakur, A., Feras, M., Beltrame, G., Nikolakopoulos, G., Shim, D., Carlone, L., & Burdick, JPostprint (published version

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTARÂżs demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)
    • …
    corecore