999 research outputs found

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Experimental demonstration of digital predistortion for orthogonal frequency-division multiplexing-radio over fibre links near laser resonance

    Get PDF
    Radio over fibre (RoF), an enabling technology for distribution of wireless broadband service signals through analogue optical links, suffers from non-linear distortion. Digital predistortion has been demonstrated as an effective approach to overcome the RoF non-linearity. However, questions remain as to how the approach performs close to laser resonance, a region of significant dynamic non-linearity, and how resilient the approach is to changes in input signal and link operating conditions. In this work, the performance of a digital predistortion approach is studied for directly modulated orthogonal frequency-division multiplexing RoF links operating from 2.47 to 3.7 GHz. It extends previous works to higher frequencies, and to higher quadrature amplitude modulation (QAM) levels. In addition, the resilience of the predistortion approach to changes in modulation level of QAM schemes, and average power levels are investigated, and a novel predistortion training approach is proposed and demonstrated. Both memoryless and memory polynomial predistorter models, and a simple off-line least-squares-based identification method, are used, with excellent performance improvements demonstrated up to 3.0 GHz

    Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-design

    Get PDF
    In recent years the number of connected devices and the demand for high data-rates have been significantly increased. This enormous growth is more pronounced by the introduction of the Internet of things (IoT) in which several devices are interconnected to exchange data for various applications like smart homes and smart cities. Moreover, new applications such as eHealth, autonomous vehicles, and connected ambulances set new demands on the reliability, latency, and data-rate of wireless communication systems, pushing forward technology developments. Massive multiple-input multiple-output (MIMO) is a technology, which is employed in the 5G standard, offering the benefits to fulfill these requirements. In massive MIMO systems, base station (BS) is equipped with a very large number of antennas, serving several users equipments (UEs) simultaneously in the same time and frequency resource. The high spatial multiplexing in massive MIMO systems, improves the data rate, energy and spectral efficiencies as well as the link reliability of wireless communication systems. The link reliability can be further improved by employing channel coding technique. Spatially coupled serially concatenated codes (SC-SCCs) are promising channel coding schemes, which can meet the high-reliability demands of wireless communication systems beyond 5G (B5G). Given the close-to-capacity error correction performance and the potential to implement a high-throughput decoder, this class of code can be a good candidate for wireless systems B5G. In order to achieve the above-mentioned advantages, sophisticated algorithms are required, which impose challenges on the baseband signal processing. In case of massive MIMO systems, the processing is much more computationally intensive and the size of required memory to store channel data is increased significantly compared to conventional MIMO systems, which are due to the large size of the channel state information (CSI) matrix. In addition to the high computational complexity, meeting latency requirements is also crucial. Similarly, the decoding-performance gain of SC-SCCs also do come at the expense of increased implementation complexity. Moreover, selecting the proper choice of design parameters, decoding algorithm, and architecture will be challenging, since spatial coupling provides new degrees of freedom in code design, and therefore the design space becomes huge. The focus of this thesis is to perform co-optimization in different design levels to address the aforementioned challenges/requirements. To this end, we employ system-level characteristics to develop efficient algorithms and architectures for the following functional blocks of digital baseband processing. First, we present a fast Fourier transform (FFT), an inverse FFT (IFFT), and corresponding reordering scheme, which can significantly reduce the latency of orthogonal frequency-division multiplexing (OFDM) demodulation and modulation as well as the size of reordering memory. The corresponding VLSI architectures along with the application specific integrated circuit (ASIC) implementation results in a 28 nm CMOS technology are introduced. In case of a 2048-point FFT/IFFT, the proposed design leads to 42% reduction in the latency and size of reordering memory. Second, we propose a low-complexity massive MIMO detection scheme. The key idea is to exploit channel sparsity to reduce the size of CSI matrix and eventually perform linear detection followed by a non-linear post-processing in angular domain using the compressed CSI matrix. The VLSI architecture for a massive MIMO with 128 BS antennas and 16 UEs along with the synthesis results in a 28 nm technology are presented. As a result, the proposed scheme reduces the complexity and required memory by 35%–73% compared to traditional detectors while it has better detection performance. Finally, we perform a comprehensive design space exploration for the SC-SCCs to investigate the effect of different design parameters on decoding performance, latency, complexity, and hardware cost. Then, we develop different decoding algorithms for the SC-SCCs and discuss the associated decoding performance and complexity. Also, several high-level VLSI architectures along with the corresponding synthesis results in a 12 nm process are presented, and various design tradeoffs are provided for these decoding schemes

    Cloud RAN for Mobile Networks - a Technology Overview

    Get PDF
    Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges the operators face while trying to support growing end-user’s needs. The main idea behind C-RAN is to pool the Baseband Units (BBUs) from multiple base stations into centralized BBU Pool for statistical multiplexing gain, while shifting the burden to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN enables energy efficient network operation and possible cost savings on base- band resources. Furthermore, it improves network capacity by performing load balancing and cooperative processing of signals originating from several base stations. This article surveys the state-of-the-art literature on C-RAN. It can serve as a starting point for anyone willing to understand C-RAN architecture and advance the research on C-RA
    • …
    corecore