195 research outputs found

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Evaluation of Channel Coding Methods for Next Generation Mobile Communication Standards

    Get PDF
    La codificación de canales es crucial para los sistemas de comunicación móvil, y los sistemas de comunicación inalámbrica 5G han decidido utilizar los códigos LDPC como esquema de codificación para sus canales de datos y los códigos Polares como esquema de codificación para sus canales de control. Este estudio se centra en los fundamentos de los códigos LDPC y los códigos Polares, especialmente los nuevos códigos polares, explicando en detalle sus características de polarización y las técnicas de decodificación recursiva. También se estudia las especificaciones de diseño relacionadas con estos dos esquemas de codificación de canales en 5G. Mediante simulaciones, se compara el rendimiento del nuevo esquema de codificación de canales inalámbricos 5G con el de los códigos Turbo a diferentes longitudes de bloque y tasas de código, y se extraen conclusiones relevantes para demostrar la aplicabilidad del esquema de codificación de canales 5G NR.Channel coding is essential for mobile communication systems, and the 5G wireless standardization committees decided to use LDPC codes as the coding scheme of its data channel and Polar codes as the coding scheme of its control channel. This study focuses on the fundamentals of LDPC codes and Polar codes, especially the emerging Polar codes, with detailed explanations of their polarization characteristics and recursive decoding techniques. It is also focused on the design specification related to these two channel coding schemes in 5G. The performance of the 5G New Radio channel coding scheme is compared with that of LTE Turbo codes at different block lengths and code rates through simulations, and relevant conclusions are drawn to demonstrate the suitability of the 5G NR channel coding scheme.Grado en Ingeniería en Sistemas de Telecomunicació

    Enhanced Machine Learning Techniques for Early HARQ Feedback Prediction in 5G

    Full text link
    We investigate Early Hybrid Automatic Repeat reQuest (E-HARQ) feedback schemes enhanced by machine learning techniques as a path towards ultra-reliable and low-latency communication (URLLC). To this end, we propose machine learning methods to predict the outcome of the decoding process ahead of the end of the transmission. We discuss different input features and classification algorithms ranging from traditional methods to newly developed supervised autoencoders. These methods are evaluated based on their prospects of complying with the URLLC requirements of effective block error rates below 10510^{-5} at small latency overheads. We provide realistic performance estimates in a system model incorporating scheduling effects to demonstrate the feasibility of E-HARQ across different signal-to-noise ratios, subcode lengths, channel conditions and system loads, and show the benefit over regular HARQ and existing E-HARQ schemes without machine learning.Comment: 14 pages, 15 figures; accepted versio

    Simulations of Implementation of Advanced Communication Technologies

    Get PDF
    Wireless communication systems have seen significant advancements with the introduction of 3G, 4G, and 5G mobile standards. Since the simulation of entire systems is complex and may not allow evaluation of the impact of individual techniques, this thesis presents techniques and results for simulating the performance of advanced signaling techniques used in 3G, 4G, and 5G systems, including Code division multiple access (CDMA), Multiple Input Multiple Output (MIMO) systems, and Low-Density Parity Check (LDPC) codes. One implementation issue that is explored is the use of quantized Analog to Digital Converter (ADC) outputs and their impact on system performance. Code division multiple access (CDMA) is a popular wireless technique, but its effectiveness is limited by factors such as multiple access interference (MAI) and the near far effect (NFE). The joint effect of sampling and quantization on the analog-digital converter (ADC) at the receiver\u27s front end has also been evaluated for different quantization bits. It has been demonstrated that 4 bits is the minimum ADC resolution sensitivity required for a reliable connection for a quantized signal with 3- and 6-dB power levels in noisy and interference-prone environments. The demand for high data rate, reliable transmission, low bit error rate, and maximum transmission with low power has increased in wireless systems. Multiple Input Multiple Output (MIMO) systems with multiple antennas at both the transmitter and receiver side can meet these requirements by exploiting diversity and multipath propagation. The focus of MIMO systems is on improving reliability and maximizing throughput. Performance analysis of single input single output (SISO), single input multiple output (SIMO), multiple input single output (MISO), and MIMO systems is conducted using Alamouti space time block code (STBC) and Maximum Ratio Combining (MRC) technique used for transmit and receive diversity for Rayleigh fading channel under AWGN environment for BPSK and QPSK modulation schemes. Spatial Multiplexing (SM) is used to enhance spectral efficiency without additional bandwidth and power requirements. Minimum mean square error (MMSE) method is used for signal detection at the receiver end due to its low complexity and better performance. The performance of MIMO SM technique is compared for different antenna configurations and modulation schemes, and the MMSE detector is employed at the receiving end. Advanced error correction techniques for channel coding are necessary to meet the demand for Mobile Internet in 5G wireless communications, particularly for the Internet of Things. Low Density Parity Check (LDPC) codes are used for error correction in 5G, offering high coding gain, high throughput, low latency, low power dissipation, low complexity, and rate compatibility. LDPC codes use base matrices of 5G New Radio (NR) for LDPC encoding, and a soft decision decoding algorithm is used for efficient Frame Error Rate (FER) performance. The performance of LDPC codes is assessed using a soft decision decoding layered message passing algorithm, with BPSK modulation and AWGN channel. Furthermore, the effects of quantization on LDPC codes are analyzed for both small and large numbers of quantization bits

    A High-Performance and Low-Complexity 5G LDPC Decoder: Algorithm and Implementation

    Full text link
    5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR blocklengths and code rates, which is a significant challenge. In this paper, we present a high-performance and low-complexity LDPC decoder, tailor-made to fulfill the 5G requirements. First, to close the gap between belief propagation (BP) decoding and its approximations in hardware, we propose an extension of adjusted min-sum decoding, called generalized adjusted min-sum (GA-MS) decoding. This decoding algorithm flexibly truncates the incoming messages at the check node level and carefully approximates the non-linear functions of BP decoding to balance the error-rate and hardware complexity. Numerical results demonstrate that the proposed fixed-point GAMS has only a minor gap of 0.1 dB compared to floating-point BP under various scenarios of 5G standard specifications. Secondly, we present a fully reconfigurable 5G NR LDPC decoder implementation based on GA-MS decoding. Given that memory occupies a substantial portion of the decoder area, we adopt multiple data compression and approximation techniques to reduce 42.2% of the memory overhead. The corresponding 28nm FD-SOI ASIC decoder has a core area of 1.823 mm2 and operates at 895 MHz. It is compatible with all 5G NR LDPC codes and achieves a peak throughput of 24.42 Gbps and a maximum area efficiency of 13.40 Gbps/mm2 at 4 decoding iterations.Comment: 14 pages, 14 figure

    Algorithms for 5G physical layer

    Get PDF
    There is a great activity in the research community towards the investigations of the various aspects of 5G at different protocol layers and parts of the network. Among all, physical layer design plays a very important role to satisfy high demands in terms of data rates, latency, reliability and number of connected devices for 5G deployment. This thesis addresses he latest developments in the physical layer algorithms regarding the channel coding, signal detection, frame synchronization and multiple access technique in the light of 5G use cases. These developments are governed by the requirements of the different use case scenarios that are envisioned to be the driving force in 5G. All chapters from chapter 2 to 5 are developed around the need of physical layer algorithms dedicated to 5G use cases. In brief, this thesis focuses on design, analysis, simulation and he advancement of physical layer aspects such as 1. Reliability based decoding of short length Linear Block Codes (LBCs) with very good properties in terms of minimum hamming istance for very small latency requiring applications. In this context, we enlarge the grid of possible candidates by considering, in particular, short length LBCs (especially extended CH codes) with soft-decision decoding; 2. Efficient synchronization of preamble/postamble in a short bursty frame using modified Massey correlator; 3. Detection of Primary User activity using semiblind spectrum sensing algorithms and analysis of such algorithms under practical imperfections; 4. Design of optimal spreading matrix for a Low Density Spreading (LDS) technique in the context of non-orthogonal multiple access. In such spreading matrix, small number of elements in a spreading sequences are non zero allowing each user to spread its data over small number of chips (tones), thus simplifying the decoding procedure using Message Passing Algorithm (MPA)
    corecore