139 research outputs found

    An Offset Cancelation Technique for Latch Type Sense Amplifiers

    Get PDF
    An offset compensation technique for a latch type sense amplifier is proposed in this paper. The proposed scheme is based on the recalibration of the charging/discharging current of the critical nodes which are affected by the device mismatches. The circuit has been designed in a 65 nm CMOS technology with 1.2 V core transistors. The auto-calibration procedure is fully digital. Simulation results are given verifying the operation for sampling a 5 Gb/s signal dissipating only 360 uW

    A 0.2pJ/conversion-step 6-bit 200MHz flash ADC with redundancy

    Get PDF
    Comunicación presentada al "27th Conference on Design of Circuits and Integrated Systems (DCIS 2012)" celebrada del 28 al 30 de Noviembre del 2012 en Avignon (Francia), organizada por el LIRMM laboratory of Montpellier: http://www.lirmm.fr/dcis2012/index.phpIn this paper, a 200MHz 6-bit Flash analog-to-digital converter (ADC) is presented. The principal objective is to obtain a digital-friendly converter. Hence, small and simple latched comparators are used and redundancy allows reducing the offset down to an acceptable level. This obviously requires calibration but reduces power consumption, since small size transistors can be used and the unused comparators are powered down. The proposed ADC is designed in UMC 0:18m CMOS technology. Full electrical simulations show that the ADC reaches an effective number of bits (ENOB) of 5.3 associated to a signal-to-noise-anddistortion ratio (SNDR) is 33dB. The converter consumes only 1.56mW and has figure-of-merit (FoM) of 0.2 pJ / conversion step.This work has been partially funded by the Junta de Andalucia project P09-TIC-5386, the Ministerio de Economia y Competitividad project TEC2011-28302, both of them cofinanced by the FEDER program.Peer Reviewe

    Analysis and Design of Power Gated Low-Power, High Performance Latch Dynamic Double-Tail Comparator

    Get PDF
    This paper introduces an elite, low power dynamic hook comparator making utilization of energy gating system with the end goal of diminished power. The comparator has dependably been a heart of simple to advanced converters in VLSI circuits. The lessening in power utilization of comparator eventually diminishes the power utilization in ADC squares. The proposed configuration has been recreated on Tanner EDA at 180nm TSMC and accomplished up to 15% diminishment in power and 71% lessening on kickback clamour from the traditional plans and in view of the present outcomes and investigation. A new low power, elite comparator is proposed, where the circuit of a dynamic twofold tail comparator with power gating procedure is altered for low-power and quick operation even in little supply voltages. With no troubles in circuit plan and by including couple of transistors, the positive criticism amid the recovery is reinforced, which brings about amazingly lessened defer time. Post-design re-enactment brings about a 180nm CMOS innovation gave the examination comes about successfully. It is demonstrated that in the proposed dynamic comparator both the power utilization, defer time, kickback noise is altogether decreased

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Design of High Speed Comparator

    Get PDF
    A new CMOS dynamic comparator using dual input single output differential amplifier as latch stage suitable for high speed analog - to - digital converters with High Spee d, low power dissipation and immune to. Back - to - back inverter in the latch stage is replaced with dual - input single output differential amplifier. This topology completely removes the noise that is present in the input. The stru cture shows lower power dissipation and higher speed than the conventional comparators. The circuit is simulated with 1V DC supply voltage and 250 MHz clock frequency. The proposed topology is based on two cross coupled differential pairs positive feedback and switchable current source ces, has a lower power dissipation, higher speed, less area, and it is shown to be very robust against transistor mismatch, n oise immunity

    A low kickback fully differential dynamic comparator for pipeline analog-to-digital converters

    Get PDF
    This study presents a fully differential dynamic comparator with low kickback noise, an effect caused by voltage variations in the regeneration nodes of these types of circuit. Given their low power dissipation, dynamic comparators are key circuits in analog-to-digital converters (ADCs), especially in pipelined ADCs. The proposed comparator has been simulated and compared with three other comparator topologies. The value of the kickback noise generated by the proposed circuit is lower than that generated by other conventional dynamic comparators over a wide input range, while simultaneously showing a low offset voltage error. The dynamic comparator has been implemented in a low-resolution ADC with a resolution of 2.5 effective bits, which has been prototyped in a 0.35-m CMOS AMS C35B4 process. Its size is 34 m × 38 m.This work has been partially funded by Spanish government projects TEC2015‐66878‐C3‐2‐R (MINECO/FEDER, UE) and RTI2018‐097088‐B‐C33 (MINECO/FEDER, UE)

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step
    corecore