172 research outputs found

    A comprehensive evaluation of work and simulation based assessment in otolaryngology training

    Get PDF
    Introduction: The otolaryngology curriculum requires trainees to show evidence of operative competence before completion of training. The General Medical Council recommended that structured assessment be used throughout training to monitor and guide trainee progression. Despite the reduction in operative exposure and the variation in trainee performance, a ‘one size fits all’ approach continues to be applied. The number of procedures performed remains the main indicator of competence. Objectives: To analyse the utilisation, reliability and validity of workplace-based assessments in otolaryngology training. To identify, develop and validate a series of simulation platforms suitable for incorporation into the otolaryngology curriculum. To develop a model of interchangeable workplace- and simulation-based assessment that reflects trainee’s trajectory, audit the delivery of training and set milestones for modular learning. Methods: A detailed review of the literature identified a list of procedure-specific assessment tools as well as simulators suitable to be used as assessment platforms. A simulation-integrated training programme was piloted and models were tested for feasibility, face, content and construct validity before being incorporated into the North London training programme. The outcomes of workplace- and simulation-based assessments of all core and specialty otolaryngology trainees were collated and analysed. Results: The outcomes of 6535 workplace-based assessments were analysed. The strengths and weaknesses of 4 different assessment tools are highlighted. Validated platforms utilising cadavers, animal tissue, synthetic material and virtual reality simulators were incorporated into the curriculum. 60 trainees and 40 consultants participated in the process and found it of great educational value. Conclusion: Assessment with structured feedback is integral to surgical training. Assessment using validated simulation modules can complement that undertaken in the workplace. The outcomes of structures assessments can be used to monitor and guide trainee trajectory at individual and regional level. The derived learning curves can shape and audit future otolaryngological training.Open Acces

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    3D printing in biomedicine: advancing personalized care through additive manufacturing

    Get PDF
    The integration of three-dimensional (3D) printing techniques into the domains of biomedical research and personalized medicine highlights the evolving paradigm shifts within contemporary healthcare. This technological advancement signifies potential breakthroughs in patient-specific therapeutic interventions and innovations. This systematic review offers a critical assessment of the existing literature, elucidating the present status, inherent challenges, and prospective avenues of 3D printing in augmenting biomedical applications and formulating tailored medical strategies. Based on an exhaustive literature analysis comprising empirical studies, case studies, and extensive reviews from the past decade, pivotal sectors including tissue engineering, prosthetic development, drug delivery systems, and customized medical apparatuses are delineated. The advent of 3D printing provides precision in the fabrication of patient-centric implants, bio-structures, and devices, thereby mitigating associated risks. Concurrently, it facilitates the ideation of individualized drug delivery paradigms to optimize therapeutic outcomes. Notwithstanding these advancements, issues concerning material biocompatibility, regulatory compliance, and the economic implications of avant-garde printing techniques persist. To fully harness the transformative potential of 3D printing in healthcare, collaborative endeavors amongst academicians, clinicians, industrial entities, and regulatory bodies are paramount. With continued research and innovation, 3D printing is poised to redefine the trajectories of biomedical science and patient-centric care. The paper aims to justify the research objective of whether to what extent the integration of 3D printing technology in biomedicine enhances patient-specific treatment and contributes to improved healthcare outcomes

    Comparing Gaussian and Bessel-Gauss beams for translating ultrafast laser ablation towards soft tissue surgery

    Get PDF
    The goal of this research was to further improve existing ultrafast laser surgery techniques. To do so, different beam shapes (Bessel-Gauss and Gaussian) were compared for performing ultrashort picosecond pulsed surgery on various soft biological tissues, with the goal of minimising collateral thermal damage. Initially, theoretical modelling was performed using OpticStudio to test axicons of various conical angles. A 20° axicon was selected, but unfortunately early tests on murine intestinal tissue indicated a lack of sufficient intensity to achieve plasma-mediated ablation of the tissue with the 6ps input pulses of 85 µJ energy. Subsequently, a reimaged setup was designed in OpticStudio to demagnify the beam by a factor of 1.4x. The ability of this demagnified Bessel-Gauss beam to perform plasma-mediated ablation of murine intestinal tissue was confirmed through histological analysis. Another setup was also designed to produce a Gaussian beam of equivalent spot size. These beams were then tested on porcine intestinal tissue using lower pulse repetition rates of 1, 2 and 3 kHz, with optimal ablation and thermal damage margins of less than 20 µm (confirmed through histological analysis) being achieved with the Bessel-Gauss beam for spatial pulse overlaps of 70%, while for the Gaussian beam the prominence of cavitation bubble formation at both 2 and 3 kHz inhibited the respective ablation processes at this same spatial pulse overlap. As the numbers of passes were increased, the Bessel-Gauss beam also showed a trend of increased ablation depths. This was attributed to its large depth of focus of over 1 mm, compared to the theoretical 48 µm depth of focus for the Gaussian beam. After characterisation of fixated, non-ablated porcine intestine sample surfaces to quantify the inhomogeneity, another set of ablation trials was performed at higher pulse repetition rates (5, 10 and 20 kHz) to test more clinically viable processes. For the Bessel-Gauss beam, spatial pulse overlaps of up to around 50% at 5, 10 and 20 kHz offered excellent thermal confinement (with damage margins of < 30 µm, < 50 µm and < 25 µm respectively) and shape control, but at 70% and greater pulse overlaps the ablated feature became hard to control despite good thermal confinement (< 40 µm). The Gaussian beam, while having the advantage of achieving plasma formation at lower input pulse energies, was again found to be more prone to undesirable cavitation effects. Cavitation bubbles were observed in the histology images for spatial pulse overlaps as low as 15% for 5 kHz and 30% for both 10 and 20 kHz. From the histology images it is clear to see that these effects became more pronounced as the pulse repetition rate was increased. Conversely, the more consistent spot size of the Bessel-Gauss beam across its longer focal depth resulted in a higher tolerance to cavitation bubble formation. This was also demonstrated by high-speed videos of the beams being scanned across porcine skin samples. This could be significant as it may allow for higher ablation rates. In addition, it could ease the design constraint of the maximum speed at which the beam can be scanned at the distal end of an endoscopic device. Despite this, both beams were able to achieve distinct ablation with high thermal confinement for certain parameters. This work further highlights fibre-delivered ultrashort laser pulses as a promising alternative to existing endoscopic tumour resection techniques, which carry a higher risk of bowel perforation.James Watt Scholarshi

    The Use of Skeletal Muscle to Amplify Action Potentials in Transected Peripheral Nerves

    Get PDF
    Upper limb amputees suffer with problems associated with control and attachment of prostheses. Skin-surface electrodes placed over the stump, which detect myoelectric signals, are traditionally used to control hand movements. However, this method is unintuitive, the electrodes lift-off, and signal selectivity can be an issue. One solution to these limitations is to implant electrodes directly on muscles. Another approach is to implant electrodes directly into the nerves that innervate the muscles. A significant challenge with both solutions is the reliable transmission of biosignals across the skin barrier. In this thesis, I investigated the use of implantable muscle electrodes in an ovine model using myoelectrodes in combination with a bone-anchor, acting as a conduit for signal transmission. High-quality readings were obtained which were significantly better than skin-surface electrode readings. I further investigated the effect of electrode configurations to achieve the best signal quality. For direct recording from nerves, I tested the effect of adsorbed endoneural basement membrane proteins on nerve regeneration in vivo using microchannel neural interfaces implanted in rat sciatic nerves. Muscle and nerve signal recordings were obtained and improvements in sciatic nerve function were observed. Direct skeletal fixation of a prosthesis to the amputation stump using a bone-anchor has been proposed as a solution to skin problems associated with traditional socket-type prostheses. However, there remains a concern about the risk of infection between the implant and skin. Achieving a durable seal at this interface is therefore crucial, which formed the final part of the thesis. Bone-anchors were optimised for surface pore size and coatings to facilitate binding of human dermal fibroblasts to optimise skin-implant seal in an ovine model. Implants silanised with Arginine-Glycine-Aspartic Acid experienced significantly increased dermal tissue infiltration. This approach may therefore improve the soft tissue seal, and thus success of bone-anchored implants. By addressing both the way prostheses are attached to the amputation stump, by way of direct skeletal fixation, as well as providing high fidelity biosignals for high-level intuitive prosthetic control, I aim to further the field of limb loss rehabilitation

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Personalized Hip and Knee Joint Replacement

    Get PDF
    This open access book describes and illustrates the surgical techniques, implants, and technologies used for the purpose of personalized implantation of hip and knee components. This new and flourishing treatment philosophy offers important benefits over conventional systematic techniques, including component positioning appropriate to individual anatomy, improved surgical reproducibility and prosthetic performance, and a reduction in complications. The techniques described in the book aim to reproduce patients’ native anatomy and physiological joint laxity, thereby improving the prosthetic hip/knee kinematics and functional outcomes in the quest of the forgotten joint. They include kinematically aligned total knee/total hip arthroplasty, partial knee replacement, and hip resurfacing. The relevance of available and emerging technological tools for these personalized approaches is also explained, with coverage of, for example, robotics, computer-assisted surgery, and augmented reality. Contributions from surgeons who are considered world leaders in diverse fields of this novel surgical philosophy make this open access book will invaluable to a wide readership, from trainees at all levels to consultants practicing lower limb surger
    • …
    corecore