11,366 research outputs found

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to ā€œensure healthy lives and promote well-being for all at all agesā€. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Effects of diabetes and aging on posture and acceleration thresholds during lateral translations

    Get PDF
    Research objectives. One source of falls in the elderly may be an inability to sufficiently adjust to transient postural perturbations or slips. Identifying useful predictors of fall potential, as well as factors that affect the ability of an individual to detect a movement of the standing support surface may provide insight into postural stability and methods to increase stability in elders. To do this, acceleration thresholds to short, precise, lateral platform translations and the resultant psychophysical responses of adults with early Type 2 diabetes to age-matched controls and young adults were measured. Methods. Using an innovative SLIP-FALLS platform, short (1, 2, 4, 8,and 16mm) lateral perturbations were presented to 21 individualsā€”9 young adults, 6 neurologically intact elder adults, and 6 elders with diabetes using a two-alternative forced choice (2AFC) protocol. All subjects underwent lower-limb nerve conduction velocity determination, air conduction velocity testing, Semmes-Weinstein monofilament thresholds, the Mini Mental Status Exam, and reaction time tests to touch, tone and high acceleration, 4mm super-threshold perturbations. Results. All three groups had significantly different thresholds at all small (\u3c4mm) movement lengths, with the diabetic neuropathy group having a markedly higher acceleration threshold (P \u3c 0.001); the healthy elderly, which, in turn, had markedly higher thresholds than young adults. Patients with neuropathy had significantly higher reaction times to platform movements and touches to the plantar sole, but not for auditory tones. Both elderly groups had a significantly higher reaction time to superthreshold platform movement than did young adults. Sensory tests revealed slower nerve conduction velocities, higher air conduction velocities, and lower cognitive ability in the diabetic group. Conclusions. A marked decrease in perception of very small moves due to aging and diabetic neuropathy could well have a detrimental effect on postural control mechanisms. The higher prevalence of falls in the elderly and elderly diabetics may be due to decreased perceptual ability, slower nerve conduction velocities, and slowing reaction times compounded by larger amounts of imparted energy needed for detection of a slipping event

    Distinct patterns of outcome valuation and amygdala-prefrontal cortex synaptic remodeling in adolescence and adulthood.

    Get PDF
    Adolescent behavior is typified by increased risk-taking, reward- and novelty-seeking, as well as an augmented need for social and environmental stimulation. This behavioral phenotype may result from alterations in outcome valuation or reward learning. In the present set of experiments, we directly compared adult and adolescent animals on tasks measuring both of these processes. Additionally, we examined developmental differences in dopamine D1-like receptor (D1R), dopamine D2-like receptor (D2R), and polysialylated neural cell adhesion molecule (PSA-NCAM) expression in animals that were trained on an effortful reward valuation task, given that these proteins play an important role in the functional development of the amygdala-prefrontocortical (PFC) circuit and mesocorticolimbic dopamine system. We found that adolescent animals were not different from adults in appetitive associative learning, but exhibited distinct pattern of responses to differences in outcome values, which was paralleled by an enhanced motivation to invest effort to obtain larger rewards. There were no differences in D2 receptor expression, but D1 receptor expression was significantly reduced in the striatum of animals that had experiences with reward learning during adolescence compared to animals that went through the same experiences in adulthood. We observed increased levels of PSA-NCAM expression in both PFC and amygdala of late adolescents compared to adults that were previously trained on an effortful reward valuation task. PSA-NCAM levels in PFC were strongly and positively associated with high effort/reward (HER) choices in adolescents, but not in adult animals. Increased levels of PSA-NCAM expression in adolescents may index increased structural plasticity and represent a neural correlate of a reward sensitive endophenotype

    Keystroke dynamics in the pre-touchscreen era

    Get PDF
    Biometric authentication seeks to measure an individualā€™s unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individualsā€™ typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts

    Malleability of the self: electrophysiological correlates of the enfacement illusion

    Get PDF
    Self-face representation is fundamentally important for self-identity and self-consciousness. Given its role in preserving identity over time, self-face processing is considered as a robust and stable process. Yet, recent studies indicate that simple psychophysics manipulations may change how we process our own face. Specifically, experiencing tactile facial stimulation while seeing similar synchronous stimuli delivered to the face of another individual seen as in a mirror, induces 'enfacement' illusion, i.e. the subjective experience of ownership of the otherā€™s face and a bias in attributing to the self, facial features of the other person. Here we recorded visual Event-Related Potentials elicited by the presentation of self, other and morphed faces during a self-other discrimination task performed immediately after participants received synchronous and control asynchronous Interpersonal Multisensory Stimulation (IMS). We found that self-face presentation after synchronous as compared to asynchronous stimulation significantly reduced the late positive potential (LPP; 450-750 ms), a reliable electrophysiological marker of self-identification processes. Additionally, enfacement cancelled out the differences in LPP amplitudes produced by self- and other-face during the control condition. These findings represent the first direct neurophysiological evidence that enfacement may affect self-face processing and pave the way to novel paradigms for exploring defective self-representation and self-other interactions
    • ā€¦
    corecore