3,792 research outputs found

    Second-Order Weight Distributions

    Full text link
    A fundamental property of codes, the second-order weight distribution, is proposed to solve the problems such as computing second moments of weight distributions of linear code ensembles. A series of results, parallel to those for weight distributions, is established for second-order weight distributions. In particular, an analogue of MacWilliams identities is proved. The second-order weight distributions of regular LDPC code ensembles are then computed. As easy consequences, the second moments of weight distributions of regular LDPC code ensembles are obtained. Furthermore, the application of second-order weight distributions in random coding approach is discussed. The second-order weight distributions of the ensembles generated by a so-called 2-good random generator or parity-check matrix are computed, where a 2-good random matrix is a kind of generalization of the uniformly distributed random matrix over a finite filed and is very useful for solving problems that involve pairwise or triple-wise properties of sequences. It is shown that the 2-good property is reflected in the second-order weight distribution, which thus plays a fundamental role in some well-known problems in coding theory and combinatorics. An example of linear intersecting codes is finally provided to illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on Information Theory, May 201

    A New Class of MDS Erasure Codes Based on Graphs

    Full text link
    Maximum distance separable (MDS) array codes are XOR-based optimal erasure codes that are particularly suitable for use in disk arrays. This paper develops an innovative method to build MDS array codes from an elegant class of nested graphs, termed \textit{complete-graph-of-rings (CGR)}. We discuss a systematic and concrete way to transfer these graphs to array codes, unveil an interesting relation between the proposed map and the renowned perfect 1-factorization, and show that the proposed CGR codes subsume B-codes as their "contracted" codes. These new codes, termed \textit{CGR codes}, and their dual codes are simple to describe, and require minimal encoding and decoding complexity.Comment: in Proceeding of IEEE Global Communications Conference (GLOBECOM

    Lattices from Codes for Harnessing Interference: An Overview and Generalizations

    Full text link
    In this paper, using compute-and-forward as an example, we provide an overview of constructions of lattices from codes that possess the right algebraic structures for harnessing interference. This includes Construction A, Construction D, and Construction πA\pi_A (previously called product construction) recently proposed by the authors. We then discuss two generalizations where the first one is a general construction of lattices named Construction πD\pi_D subsuming the above three constructions as special cases and the second one is to go beyond principal ideal domains and build lattices over algebraic integers

    Weight Distributions of Regular Low-Density Parity-Check Codes over Finite Fields

    Full text link
    The average weight distribution of a regular low-density parity-check (LDPC) code ensemble over a finite field is thoroughly analyzed. In particular, a precise asymptotic approximation of the average weight distribution is derived for the small-weight case, and a series of fundamental qualitative properties of the asymptotic growth rate of the average weight distribution are proved. Based on this analysis, a general result, including all previous results as special cases, is established for the minimum distance of individual codes in a regular LDPC code ensemble.Comment: 15 pages, 5 figures, accepted for publication in IEEE Transactions on Information Theory, July 201
    • …
    corecore