1,744 research outputs found

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea

    Design of low-density parity-check codes in relay channels

    Get PDF
    Recent breakthroughs in forward error correction, in the form of low-density parity-check (LDPC) and turbo codes, have seen near Shannon limit performances especially for pointto- point channels. The construction of capacity-achieving codes in relay channels, for LDPC codes in particular, is currently the subject of intense interest in the research and development community. This thesis adds to this field, developing methods and supporting theory in designing capacity-achieving LDPC codes for decode-and-forward (DF) schemes in relay channels. In the first part of the thesis, new theoretical results toward optimizing the achievable rate of DF scheme in half-duplex relay channels under simplified and pragmatic conditions (equal power or equal time allocation) are developed. We derive the closed-form solutions for the optimum parameters (time or power) that maximize the achievable rates of the DF scheme in the half-duplex relay channel. We also derive the closed-form expression for the DF achievable rates under these simplified and pragmatic conditions. The second part of the thesis is dedicated to study the problem of designing several classes of capacity-achieving LDPC codes in relay channels. First, a new ensemble of LDPC codes, termed multi-edge-type bilayer-expurgated LDPC (MET-BE-LDPC) codes, is introduced to closely approach the theoretical limit of the DF scheme in the relay channel. We propose two design strategies for optimizing MET-BE-LDPC codes; the bilayer approach and the bilayer approach with intermediate rates. Second, we address the issue of constructing capacity-achieving distributed LDPC codes in the multiple-access and two-way relay channels, with broadcast transmissions and time-division multiple accesses. We propose a new methodology to asymptotically optimize the code’s degree distribution when different segments within the distributed codeword have been transmitted through separate channels and experienced distinct signal-to-noise ratio in the relay system. Third, we investigate the use of LDPC codes under the soft-decode-and forward (SDF) scheme in the half-duplex relay channel. We introduce the concept of a K-layer doping matrix that enables one to design the rate-compatible (RC) LDPC code with a lower triangular parity-check matrix, subsequently allowing the additional parity bits to be linearly and systematically encoded at the relay. We then present the soft-decoding and soft-re-encoding algorithms for the designed RC-LDPC code so that the relay can forward soft messages to the destination when the relay fails to decode the source’s messages. Special attention is given to the detection problem of the SDF scheme. We propose a novel method, which we refer to as soft fading, to compute the log-likelihood ratio of the received signal at the destination for the SDF scheme

    Collaborative Coding Techniques with Analog Network Coding in Wireless Y-Channel-Relay Networks

    Get PDF
    After channel coding reached near Shannon-limit performance with the introduction of Turbo codes and Low-Density Parity-Check (LDPC) codes, research moved on to network coding techniques to enhance overall network performance. The most recent and novel of those approaches is the idea of Physical (Analog) Network Coding which embraces interference from other users, mixes signals in the channel rather than in a relay, and can theoretically increase throughput in the two-way relay channel by up to two folds. In this thesis, we explore this idea, and analyze the theoretical gains of using network coding in a Y-Channel problem - where three users communicate through a common relay. We study existing collaborative coding techniques for the Y-Channel like nested recursive convolutional codes, and Combined Network Channel (CNC). After that, we introduce enhanced nested codes based on turbo codes that achieve good performance in poor SINR conditions. In addition, we propose a novel equal-rate collaborative coding scheme based on algebraic linear block codes. This scheme is simpler to implement than CNC, yet its burst-traffic performance is better than any of the studied solutions. In theory, this code reduces the number of transmission timeslots by up to three folds. Finally, we put forward practical scenarios where physical network coding can be harnessed – mainly in Long Term Evolution (LTE) Multicast (eMBMS), and opportunistic routing in Wireless Mesh Networks
    corecore