12,930 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    OPEB: Open Physical Environment Benchmark for Artificial Intelligence

    Full text link
    Artificial Intelligence methods to solve continuous- control tasks have made significant progress in recent years. However, these algorithms have important limitations and still need significant improvement to be used in industry and real- world applications. This means that this area is still in an active research phase. To involve a large number of research groups, standard benchmarks are needed to evaluate and compare proposed algorithms. In this paper, we propose a physical environment benchmark framework to facilitate collaborative research in this area by enabling different research groups to integrate their designed benchmarks in a unified cloud-based repository and also share their actual implemented benchmarks via the cloud. We demonstrate the proposed framework using an actual implementation of the classical mountain-car example and present the results obtained using a Reinforcement Learning algorithm.Comment: Accepted in 3rd IEEE International Forum on Research and Technologies for Society and Industry 201

    Open-Source Drone Programming Course for Distance Engineering Education.

    Get PDF
    This article presents a full course for autonomous aerial robotics inside the RoboticsAcademy framework. This “drone programming” course is open-access and ready-to-use for any teacher/student to teach/learn drone programming with it for free. The students may program diverse drones on their computers without a physical presence in this course. Unmanned aerial vehicles (UAV) applications are essentially practical, as their intelligence resides in the software part. Therefore, the proposed course emphasizes drone programming through practical learning. It comprises a collection of exercises resembling drone applications in real life, such as following a road, visual landing, and people search and rescue, including their corresponding background theory. The course has been successfully taught for five years to students from several university engineering degrees. Some exercises from the course have also been validated in three aerial robotics competitions, including an international one. RoboticsAcademy is also briefly presented in the paper. It is an open framework for distance robotics learning in engineering degrees. It has been designed as a practical complement to the typical online videos of massive open online courses (MOOCs). Its educational contents are built upon robot operating system (ROS) middleware (de facto standard in robot programming), the powerful 3D Gazebo simulator, and the widely used Python programming language. Additionally, RoboticsAcademy is a suitable tool for gamified learning and online robotics competitions, as it includes several competitive exercises and automatic assessment toolspost-print5214 K

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested
    • 

    corecore