1,372 research outputs found

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    A Highly Scalable IoT Architecture through Network Function Virtualization

    Get PDF
    As the number of devices for Internet of Things (IoT) is rapidly growing, existing communication infrastructures are forced to continually evolve. The next generation network infrastructure is expected to be virtualized and able to integrate different kinds of information technology resources. Network Functions Virtualization (NFV) is one of the leading concepts facilitating the operation of network services in a scalable manner. In this paper, we present an architecture involving NFV to meet the requirements of highly scalable IoT scenarios. We highlight the benefits and challenges of our approach for IoT stakeholders. Finally, the paper illustrates our vision of how the proposed architecture can be applied in the context of a state-of-the-art high-tech operating room, which we are going to realize in future work

    Maintainability analysis of mining trucks with data analytics.

    Get PDF
    The mining industry is one of the biggest industries in need of a large budget, and current changes in global economic challenges force the industry to reduce its production expenses. One of the biggest expenditures is maintenance. Thanks to the data mining techniques, available historical records of machines’ alarms and signals might be used to predict machine failures. This is crucial because repairing machines after failures is not as efficient as utilizing predictive maintenance. In this case study, the reasons for failures seem to be related to the order of signals or alarms, called events, which come from trucks. The trucks ran twenty-four hours a day, seven days a week, and drivers worked twelve-hour shifts during a nine-month period. Sequential pattern mining was implemented as a data mining methodology to discover which failures might be connected to groups of events, and SQL was used for analyzing the data. According to results, there are several sequential patterns in alarms and signals before machine breakdowns occur. Furthermore, the results are shown differently depending on shifts’ sizes. Before breakdowns occur in the last five shifts a hundred percent detection rates are observed. However, in the last three shifts it is observed less than a hundred-percentage detection rate

    The 10th Jubilee Conference of PhD Students in Computer Science

    Get PDF

    SYSTEMATIC LITERATURE REVIEW OF IOT METRICS

    Get PDF
    The Internet of Things (IoT) touches almost every aspect of modern society and has changed the way people live, work, travel and, do business. Because of its importance, it is essential to ensure that an IoT system is performing well, as desired and expected, and that this can be assessed and managed with an adequate set of IoT performance metrics. The aim of this study was to systematically inventory and classifies recent studies that have investigated IoT metrics. We conducted a literature review based on studies published between January 2010 and December 2021 using a set of five research questions (RQs) on the current knowledge bases for IoT metrics. A total of 158 IoT metrics were identified and classified into 12 categories according to the different parts and aspects of an IoT system. To cover the overall performance of an IoT system, the 12 categories were organized into an ontology.  The findings results show that the category of network metrics was the most discussed in 43% of the studies and, with the highest number of metrics at 37%. This study can provide guidelines for researchers and practitioners in selecting metrics for IoT systems and valuable insights into areas for improvement and optimization. &nbsp

    IoT for wheel alignment monitoring system

    Get PDF
    A great deal of previous research into wheel alignment has focused on techniques of the alignment, which involve big, bulky and high cost to maintain. Even though several approaches are required, the works are tedious and only performed in spacious area and trained mechanics. IoT is the alternatives due to the evolution of smartphone with numerous sensors to support and assist the research and development for IoT applications in vehicles. In this work, smaller and portable wheel alignment monitoring system is introduced by using communication protocol between sensors, microcontroller and mobile phone application. Thus, graphical user interface (GUI) is utilized to the system via wireless communication technology using TCP/IP Communication Protocol. The system has been tested to suit the functioning architecture system for the wheel alignment to provide the user awareness on early detection of wheel misalignment. In addition, the application has been successfully integrated with Android mobile application via TCP/IP communication protocol and view the results in smart phone in real-time
    • 

    corecore