19,699 research outputs found

    Low cost duration modelling for noise robust speech recognition

    Get PDF
    State transition matrices as used in standard HMM decoders have two widely perceived limitations. One is that the implicit Geometric state duration distributions which they model do not accurately reflect true duration distributions. The other is that they impose no hard limit on maximum duration with the result that state transition probabilities often have little influence when combined with acoustic probabilities, which are of a different order of magnitude. Explicit duration models were developed in the past to address the first problem. These were not widely taken up because their performance advantage in clean speech recognition was often not sufficiently great to offset the extra complexity which they introduced. However, duration models have much greater potential when applied to noisy speech recognition. In this paper we present a simple and generic form of explicit duration model and show that this leads to strong performance improvements when applied to connected digit recognition in noise

    Estimation of glottal closure instants in voiced speech using the DYPSA algorithm

    Get PDF
    Published versio

    Robust Speech Detection for Noisy Environments

    Get PDF
    This paper presents a robust voice activity detector (VAD) based on hidden Markov models (HMM) to improve speech recognition systems in stationary and non-stationary noise environments: inside motor vehicles (like cars or planes) or inside buildings close to high traffic places (like in a control tower for air traffic control (ATC)). In these environments, there is a high stationary noise level caused by vehicle motors and additionally, there could be people speaking at certain distance from the main speaker producing non-stationary noise. The VAD presented in this paper is characterized by a new front-end and a noise level adaptation process that increases significantly the VAD robustness for different signal to noise ratios (SNRs). The feature vector used by the VAD includes the most relevant Mel Frequency Cepstral Coefficients (MFCC), normalized log energy and delta log energy. The proposed VAD has been evaluated and compared to other well-known VADs using three databases containing different noise conditions: speech in clean environments (SNRs mayor que 20 dB), speech recorded in stationary noise environments (inside or close to motor vehicles), and finally, speech in non stationary environments (including noise from bars, television and far-field speakers). In the three cases, the detection error obtained with the proposed VAD is the lowest for all SNRs compared to Acero¿s VAD (reference of this work) and other well-known VADs like AMR, AURORA or G729 annex b

    Modelling of Sound Events with Hidden Imbalances Based on Clustering and Separate Sub-Dictionary Learning

    Full text link
    This paper proposes an effective modelling of sound event spectra with a hidden data-size-imbalance, for improved Acoustic Event Detection (AED). The proposed method models each event as an aggregated representation of a few latent factors, while conventional approaches try to find acoustic elements directly from the event spectra. In the method, all the latent factors across all events are assigned comparable importance and complexity to overcome the hidden imbalance of data-sizes in event spectra. To extract latent factors in each event, the proposed method employs clustering and performs non-negative matrix factorization to each latent factor, and learns its acoustic elements as a sub-dictionary. Separate sub-dictionary learning effectively models the acoustic elements with limited data-sizes and avoids over-fitting due to hidden imbalances in training data. For the task of polyphonic sound event detection from DCASE 2013 challenge, an AED based on the proposed modelling achieves a detection F-measure of 46.5%, a significant improvement of more than 19% as compared to the existing state-of-the-art methods

    SVMs for Automatic Speech Recognition: a Survey

    Get PDF
    Hidden Markov Models (HMMs) are, undoubtedly, the most employed core technique for Automatic Speech Recognition (ASR). Nevertheless, we are still far from achieving high-performance ASR systems. Some alternative approaches, most of them based on Artificial Neural Networks (ANNs), were proposed during the late eighties and early nineties. Some of them tackled the ASR problem using predictive ANNs, while others proposed hybrid HMM/ANN systems. However, despite some achievements, nowadays, the preponderance of Markov Models is a fact. During the last decade, however, a new tool appeared in the field of machine learning that has proved to be able to cope with hard classification problems in several fields of application: the Support Vector Machines (SVMs). The SVMs are effective discriminative classifiers with several outstanding characteristics, namely: their solution is that with maximum margin; they are capable to deal with samples of a very higher dimensionality; and their convergence to the minimum of the associated cost function is guaranteed. These characteristics have made SVMs very popular and successful. In this chapter we discuss their strengths and weakness in the ASR context and make a review of the current state-of-the-art techniques. We organize the contributions in two parts: isolated-word recognition and continuous speech recognition. Within the first part we review several techniques to produce the fixed-dimension vectors needed for original SVMs. Afterwards we explore more sophisticated techniques based on the use of kernels capable to deal with sequences of different length. Among them is the DTAK kernel, simple and effective, which rescues an old technique of speech recognition: Dynamic Time Warping (DTW). Within the second part, we describe some recent approaches to tackle more complex tasks like connected digit recognition or continuous speech recognition using SVMs. Finally we draw some conclusions and outline several ongoing lines of research

    Towards responsive Sensitive Artificial Listeners

    Get PDF
    This paper describes work in the recently started project SEMAINE, which aims to build a set of Sensitive Artificial Listeners – conversational agents designed to sustain an interaction with a human user despite limited verbal skills, through robust recognition and generation of non-verbal behaviour in real-time, both when the agent is speaking and listening. We report on data collection and on the design of a system architecture in view of real-time responsiveness
    corecore