66,259 research outputs found

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB

    Quantization as histogram segmentation: globally optimal scalar quantizer design in network systems

    Get PDF
    We propose a polynomial-time algorithm for optimal scalar quantizer design on discrete-alphabet sources. Special cases of the proposed approach yield optimal design algorithms for fixed-rate and entropy-constrained scalar quantizers, multi-resolution scalar quantizers, multiple description scalar quantizers, and Wyner-Ziv scalar quantizers. The algorithm guarantees globally optimal solutions for fixed-rate and entropy-constrained scalar quantizers and constrained optima for the other coding scenarios. We derive the algorithm by demonstrating the connection between scalar quantization, histogram segmentation, and the shortest path problem in a certain directed acyclic graph

    Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport

    Get PDF
    Surrogate functions have become an important tool in multidisciplinary design optimization to deal with noisy functions, high computational cost, and the practical difficulty of integrating legacy disciplinary computer codes. A combination of mathematical, statistical, and engineering techniques, well known in other contexts, have made polynomial surrogate functions viable for MDO. Despite the obvious limitations imposed by sparse high fidelity data in high dimensions and the locality of low order polynomial approximations, the success of the panoply of techniques based on polynomial response surface approximations for MDO shows that the implementation details are more important than the underlying approximation method (polynomial, spline, DACE, kernel regression, etc.). This paper surveys some of the ancillary techniques—statistics, global search, parallel computing, variable complexity modeling—that augment the construction and use of polynomial surrogates

    Constraining Implicit Space with Minimum Description Length: An Unsupervised Attention Mechanism across Neural Network Layers

    Full text link
    Inspired by the adaptation phenomenon of neuronal firing, we propose the regularity normalization (RN) as an unsupervised attention mechanism (UAM) which computes the statistical regularity in the implicit space of neural networks under the Minimum Description Length (MDL) principle. Treating the neural network optimization process as a partially observable model selection problem, UAM constrains the implicit space by a normalization factor, the universal code length. We compute this universal code incrementally across neural network layers and demonstrated the flexibility to include data priors such as top-down attention and other oracle information. Empirically, our approach outperforms existing normalization methods in tackling limited, imbalanced and non-stationary input distribution in image classification, classic control, procedurally-generated reinforcement learning, generative modeling, handwriting generation and question answering tasks with various neural network architectures. Lastly, UAM tracks dependency and critical learning stages across layers and recurrent time steps of deep networks

    MIMO Detection for High-Order QAM Based on a Gaussian Tree Approximation

    Full text link
    This paper proposes a new detection algorithm for MIMO communication systems employing high order QAM constellations. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, a straightforward application of the Belief Propagation (BP) algorithm yields very poor results. Our algorithm is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. The finite-set constraint is then applied to obtain a loop-free discrete distribution. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the loop-free factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection
    • …
    corecore