270 research outputs found

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Advanced signal processing techniques for pitch synchronous sinusoidal speech coders

    Get PDF
    Recent trends in commercial and consumer demand have led to the increasing use of multimedia applications in mobile and Internet telephony. Although audio, video and data communications are becoming more prevalent, a major application is and will remain the transmission of speech. Speech coding techniques suited to these new trends must be developed, not only to provide high quality speech communication but also to minimise the required bandwidth for speech, so as to maximise that available for the new audio, video and data services. The majority of current speech coders employed in mobile and Internet applications employ a Code Excited Linear Prediction (CELP) model. These coders attempt to reproduce the input speech signal and can produce high quality synthetic speech at bit rates above 8 kbps. Sinusoidal speech coders tend to dominate at rates below 6 kbps but due to limitations in the sinusoidal speech coding model, their synthetic speech quality cannot be significantly improved even if their bit rate is increased. Recent developments have seen the emergence and application of Pitch Synchronous (PS) speech coding techniques to these coders in order to remove the limitations of the sinusoidal speech coding model. The aim of the research presented in this thesis is to investigate and eliminate the factors that limit the quality of the synthetic speech produced by PS sinusoidal coders. In order to achieve this innovative signal processing techniques have been developed. New parameter analysis and quantisation techniques have been produced which overcome many of the problems associated with applying PS techniques to sinusoidal coders. In sinusoidal based coders, two of the most important elements are the correct formulation of pitch and voicing values from the' input speech. The techniques introduced here have greatly improved these calculations resulting in a higher quality PS sinusoidal speech coder than was previously available. A new quantisation method which is able to reduce the distortion from quantising speech spectral information has also been developed. When these new techniques are utilised they effectively raise the synthetic speech quality of sinusoidal coders to a level comparable to that produced by CELP based schemes, making PS sinusoidal coders a promising alternative at low to medium bit rates.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimisation techniques for low bit rate speech coding

    Get PDF
    This thesis extends the background theory of speech and major speech coding schemes used in existing networks to an implementation of GSM full-rate speech compression on a RISC DSP and a multirate application for speech coding. Speech coding is the field concerned with obtaining compact digital representations of speech signals for the purpose of efficient transmission. In this thesis, the background of speech compression, characteristics of speech signals and the DSP algorithms used have been examined. The current speech coding schemes and requirements have been studied. The Global System for Mobile communication (GSM) is a digital mobile radio system which is extensively used throughout Europe, and also in many other parts of the world. The algorithm is standardised by the European Telecommunications Standardisation histitute (ETSI). The full-rate and half-rate speech compression of GSM have been analysed. A real time implementation of the full-rate algorithm has been carried out on a RISC processor GEPARD by Austria Mikro Systeme International (AMS). The GEPARD code has been tested with all of the test sequences provided by ETSI and the results are bit-exact. The transcoding delay is lower than the ETSI requirement. A comparison of the half-rate and full-rate compression algorithms is discussed. Both algorithms offer near toll speech quality comparable or better than analogue cellular networks. The half-rate compression requires more computationally intensive operations and therefore a more powerful processor will be needed due to the complexity of the code. Hence the cost of the implementation of half-rate codec will be considerably higher than full-rate. A description of multirate signal processing and its application on speech (SBC) and speech/audio (MPEG) has been given. An investigation into the possibility of combining multirate filtering and GSM fill-rate speech algorithm. The results showed that multirate signal processing cannot be directly applied GSM full-rate speech compression since this method requires more processing power, causing longer coding delay but did not appreciably improve the bit rate. In order to achieve a lower bit rate, the GSM full-rate mathematical algorithm can be used instead of the standardised ETSI recommendation. Some changes including the number of quantisation bits has to be made before the application of multirate signal processing and a new standard will be required

    New techniques in signal coding

    Get PDF

    A Parametric Approach for Efficient Speech Storage, Flexible Synthesis and Voice Conversion

    Get PDF
    During the past decades, many areas of speech processing have benefited from the vast increases in the available memory sizes and processing power. For example, speech recognizers can be trained with enormous speech databases and high-quality speech synthesizers can generate new speech sentences by concatenating speech units retrieved from a large inventory of speech data. However, even in today's world of ever-increasing memory sizes and computational resources, there are still lots of embedded application scenarios for speech processing techniques where the memory capacities and the processor speeds are very limited. Thus, there is still a clear demand for solutions that can operate with limited resources, e.g., on low-end mobile devices. This thesis introduces a new segmental parametric speech codec referred to as the VLBR codec. The novel proprietary sinusoidal speech codec designed for efficient speech storage is capable of achieving relatively good speech quality at compression ratios beyond the ones offered by the standardized speech coding solutions, i.e., at bitrates of approximately 1 kbps and below. The efficiency of the proposed coding approach is based on model simplifications, mode-based segmental processing, and the method of adaptive downsampling and quantization. The coding efficiency is also further improved using a novel flexible multi-mode matrix quantizer structure and enhanced dynamic codebook reordering. The compression is also facilitated using a new perceptual irrelevancy removal method. The VLBR codec is also applied to text-to-speech synthesis. In particular, the codec is utilized for the compression of unit selection databases and for the parametric concatenation of speech units. It is also shown that the efficiency of the database compression can be further enhanced using speaker-specific retraining of the codec. Moreover, the computational load is significantly decreased using a new compression-motivated scheme for very fast and memory-efficient calculation of concatenation costs, based on techniques and implementations used in the VLBR codec. Finally, the VLBR codec and the related speech synthesis techniques are complemented with voice conversion methods that allow modifying the perceived speaker identity which in turn enables, e.g., cost-efficient creation of new text-to-speech voices. The VLBR-based voice conversion system combines compression with the popular Gaussian mixture model based conversion approach. Furthermore, a novel method is proposed for converting the prosodic aspects of speech. The performance of the VLBR-based voice conversion system is also enhanced using a new approach for mode selection and through explicit control of the degree of voicing. The solutions proposed in the thesis together form a complete system that can be utilized in different ways and configurations. The VLBR codec itself can be utilized, e.g., for efficient compression of audio books, and the speech synthesis related methods can be used for reducing the footprint and the computational load of concatenative text-to-speech synthesizers to levels required in some embedded applications. The VLBR-based voice conversion techniques can be used to complement the codec both in storage applications and in connection with speech synthesis. It is also possible to only utilize the voice conversion functionality, e.g., in games or other entertainment applications

    Scalable and perceptual audio compression

    Get PDF
    This thesis deals with scalable perceptual audio compression. Two scalable perceptual solutions as well as a scalable to lossless solution are proposed and investigated. One of the scalable perceptual solutions is built around sinusoidal modelling of the audio signal whilst the other is built on a transform coding paradigm. The scalable coders are shown to scale both in a waveform matching manner as well as a psychoacoustic manner. In order to measure the psychoacoustic scalability of the systems investigated in this thesis, the similarity between the original signal\u27s psychoacoustic parameters and that of the synthesized signal are compared. The psychoacoustic parameters used are loudness, sharpness, tonahty and roughness. This analysis technique is a novel method used in this thesis and it allows an insight into the perceptual distortion that has been introduced by any coder analyzed in this manner

    Speech coding

    Full text link
    corecore