182 research outputs found

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Adaptive digital predistortion for linearization of power amplifier

    Get PDF
    Ankara : The Department of Electrical and electronics Engineering and the Institute of Engineering and Science of Bilkent University, 2009.Thesis (Master's) -- Bilkent University, 2009.Includes bibliographical references leaves 55.In most communication systems, power amplifiers are used to obtain high output power. The nonlinear characteristics of the power amplifier leads to the distortion of the output signal. This distortion affects the efficiency of the power amplifier. The way to reduce this effect is to linearize the power amplifier near the saturation region where it is nonlinear. The widely used technique for the linearization of power amplifiers is predistortion. The proposed technique for predistortion uses a LUT(look-up-table), a complex multiplier, an address calculator, delay elements and an adaptation logic. A new adaptation logic to update the LUT coefficients, is used. The predistorter is simulated in Matlab software using a baseband model for the power amplifier. 16-QAM baseband modulation is used to simulate the predistorter. In order to see the performance of the proposed predistorter, hardware logic is implemented in FPGA and experimental setup with RF circuits and RF power amplifier is used. For different LUT sizes, the algorithm is tested and for the LUT size of 64, nearly 15 dB improvement in power spectrum is observed. The LUT size of 64 is observed to be the optimal LUT size in the experiments.Åžekerlisoy, BurakM.S

    Behavioral modeling and FPGA implementation of digital predistortion for RF and microwave power amplifiers

    Get PDF
    With the high interest in digital modulation techniques which are very sensitive to the PA nonlinearity, modern wireless communication systems require the usage of linearization techniques to improve the linear behavior of the RF power amplifier. The powerful and cheap digital processing technology makes the digital predistortion (DPD) a competitive candidate for the linearization of the PA. This thesis introduces the basic principle of DPD, its implementation on FPGA and the adaptive DPD system. The linearization of 4 PAs with DPD technique has been introduced: for the hybrid class AB PA operating at 2.6 GHz with a WiMAX testing signal, 33.7 dBm average power, 29.6 % drain efficiency, 13 dB ACPR and 9 dB NMSE improvement have been obtained; for the hybrid Doherty PA operating at 3.4 GHz with an I/Q testing signal, 35.0 dBm average power, 36.8 % drain efficiency, 12 dB ACPR and 13 dB NMSE improvement have been obtained; for the MMIC class AB PA operating at 7 GHz with an I/Q testing signal, 29.4 dBm average power, 25.7 % drain efficiency, 12 dB ACPR and 12 dB NMSE improvement have been obtained; for the two-stage PA operating at 24 GHz with an I/Q testing signal, 23.5 dBm average power, more than 14.0 % drain efficiency, 11 dB ACPR and 11 dB NMSE improvement have been obtained. The DPD algorithm has been implemented on FPGA with two methods based on LUT and a direct structure with only adders and multipliers. The block RAM on the FPGA board is chosen as the table in the LUT methods. The linearization performance for these three methods is similar. The test PA is the hybrid Doherty PA mentioned above and the test signal is the I/Q signal with 7.4 dB PAPR. 35.1 dBm average power, 36.8 % efficiency, 11 dB ACPR and 11 dB NMSE improvement have been obtained. The cost of logic resources for the direct structure method is the largest with 1,172 flip-flops, while the number of flip-flops for the two LUT methods are 263 and 583, respectively. A new adaptive algorithm has been proposed in this thesis for the adaptive DPD system. This new algorithm improves the performance in extracting the model parameters in complex number domain. With the experimental data from a combined class AB PA, the final accuracy of the model extracted by the new algorithm has been improved from -20 dB to about -40 dB and the converge speed is faster

    High power amplifier pre-distorter based on neural-fuzzy systems for OFDM signals

    Get PDF
    In this paper, a novel High Power Amplifier (HPA) pre-distorter based on Adaptive Networks - Fuzzy Inference Systems (ANFIS) for Orthogonal Frequency Division Multiplexing (OFDM) signals is proposed and analyzed. Models of Traveling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers (SSPA), both memoryless and with memory, have been used for evaluation of the proposed technique. After training, the ANFIS linearizes the HPA response and thus, the obtained signal is extremely similar to the original. An average Error Vector Magnitude (EVM) of 10-6 can be easily obtained with our proposal. As a consequence, the Bit Error Rate (BER) degradation is negligible showing a better performance than what can be achieved with other methods available in the literature. Moreover, the complexity of the proposed scheme is reducedThis work was supported in part by projectsMULTIADAPTIVE (TEC2008-06327-C03-02) and AECI Program of Research Cooperation with MoroccoPublicad

    Contribution to dimensionality reduction of digital predistorter behavioral models for RF power amplifier linearization

    Get PDF
    The power efficiency and linearity of radio frequency (RF) power amplifiers (PAs) are critical in wireless communication systems. The main scope of PA designers is to build the RF PAs capable to maintain high efficiency and linearity figures simultaneously. However, these figures are inherently conflicted to each other and system-level solutions based on linearization techniques are required. Digital predistortion (DPD) linearization has become the most widely used solution to mitigate the efficiency versus linearity trade-off. The dimensionality of the DPD model depends on the complexity of the system. It increases significantly in high efficient amplification architectures when considering current wideband and spectrally efficient technologies. Overparametrization may lead to an ill-conditioned least squares (LS) estimation of the DPD coefficients, which is usually solved by employing regularization techniques. However, in order to both reduce the computational complexity and avoid ill-conditioning problems derived from overparametrization, several efforts have been dedicated to investigate dimensionality reduction techniques to reduce the order of the DPD model. This dissertation contributes to the dimensionality reduction of DPD linearizers for RF PAs with emphasis on the identification and adaptation subsystem. In particular, several dynamic model order reduction approaches based on feature extraction techniques are proposed. Thus, the minimum number of relevant DPD coefficients are dynamically selected and estimated in the DPD adaptation subsystem. The number of DPD coefficients is reduced, ensuring a well-conditioned LS estimation while demanding minimum hardware resources. The presented dynamic linearization approaches are evaluated and compared through experimental validation with an envelope tracking PA and a class-J PA The experimental results show similar linearization performance than the conventional LS solution but at lower computational cost.La eficiencia energetica y la linealidad de los amplificadores de potencia (PA) de radiofrecuencia (RF) son fundamentales en los sistemas de comunicacion inalambrica. El principal objetivo a alcanzar en el diserio de amplificadores de radiofrecuencia es lograr simultaneamente elevadas cifras de eficiencia y de linealidad. Sin embargo, estas cifras estan inherentemente en conflicto entre si, y se requieren soluciones a nivel de sistema basadas en tecnicas de linealizacion. La linealizacion mediante predistorsion digital (DPD) se ha convertido en la solucion mas utilizada para mitigar el compromise entre eficiencia y linealidad. La dimension del modelo del predistorsionador DPD depende de la complejidad del sistema, y aumenta significativamente en las arquitecturas de amplificacion de alta eficiencia cuando se consideran los actuales anchos de banda y las tecnologfas espectralmente eficientes. El exceso de parametrizacion puede conducir a una estimacion de los coeficientes DPD, mediante minimos cuadrados (LS), mal condicionada, lo cual generalmente se resuelve empleando tecnicas de regularizacion. Sin embargo, con el fin de reducir la complejidad computacional y evitar dichos problemas de mal acondicionamiento derivados de la sobreparametrizacion, se han dedicado varies esfuerzos para investigar tecnicas de reduccion de dimensionalidad que permitan reducir el orden del modelo del DPD. Esta tesis doctoral contribuye a aportar soluciones para la reduccion de la dimension de los linealizadores DPD para RF PA, centrandose en el subsistema de identificacion y adaptacion. En concrete, se proponen varies enfoques de reduccion de orden del modelo dinamico, basados en tecnicas de extraccion de caracteristicas. El numero minimo de coeficientes DPD relevantes se seleccionan y estiman dinamicamente en el subsistema de adaptacion del DPD, y de este modo la cantidad de coeficientes DPD se reduce, lo cual ademas garantiza una estimacion de LS bien condicionada al tiempo que exige menos recursos de hardware. Las propuestas de linealizacion dinamica presentados en esta tesis se evaluan y comparan mediante validacion experimental con un PA de seguimiento de envolvente y un PA tipo clase J. Los resultados experimentales muestran unos resultados de linealizacion de los PA similares a los obtenidos cuando se em plea la solucion LS convencional, pero con un coste computacional mas reducido.Postprint (published version

    Improving the Spectral Efficiency of Nonlinear Satellite Systems through Time-Frequency Packing and Advanced Processing

    Full text link
    We consider realistic satellite communications systems for broadband and broadcasting applications, based on frequency-division-multiplexed linear modulations, where spectral efficiency is one of the main figures of merit. For these systems, we investigate their ultimate performance limits by using a framework to compute the spectral efficiency when suboptimal receivers are adopted and evaluating the performance improvements that can be obtained through the adoption of the time-frequency packing technique. Our analysis reveals that introducing controlled interference can significantly increase the efficiency of these systems. Moreover, if a receiver which is able to account for the interference and the nonlinear impairments is adopted, rather than a classical predistorter at the transmitter coupled with a simpler receiver, the benefits in terms of spectral efficiency can be even larger. Finally, we consider practical coded schemes and show the potential advantages of the optimized signaling formats when combined with iterative detection/decoding.Comment: 8 pages, 8 figure

    Energy-Efficient Distributed Estimation by Utilizing a Nonlinear Amplifier

    Get PDF
    abstract: Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.Dissertation/ThesisPh.D. Electrical Engineering 201

    Transmitter Linearization for mm-Wave Communications Systems

    Get PDF
    There is an ever increasing need for enabling higher data rates in modern communication systems which brings new challenges in terms of the power consumption and nonlinearity of hardware components. These problems become prominent in power amplifiers (PAs) and can significantly degrade the performance of transmitters, and hence the overall communication system. Hence, it is of central importance to design efficient PAs with a linear operation region. This thesis proposes a methodology and a comprehensive framework to address this challenge. This is accomplished by application of predistortion to a mm-wave PA and an E-band IQ transmitter while investigating the trade-offs between linearity, efficiency and predistorter complexity using the proposed framework.In the first line of work, we have focused on a mm-wave PA. A PA has high efficiency at high input power at the expense of linearity, whereas it operates linearly for lower input power levels while sacrificing efficiency. To attain both linearity and efficiency, predistortion is often used to compensate for the PA nonlinearity. Yet, the trade-offs related to predistortion complexities are not fully understood. To address this challenge, we have used our proposed framework for evaluation of predistorters using modulated test signals and implemented it using digital predistortion and a mm-wave PA. This set-up enabled us to investigate the trade-offs between linearity, efficiency and predistorter complexity in a systematic manner. We have shown that to achieve similar linearity levels for different PA classes, predistorters with different complexities are needed and provided guidelines on the achievable limits in term linearity for a given predistorter complexity for different PA classes.In the second line of work, we have focused on linearization of an E-band transmitter using a baseband analog predistorter (APD) and under constraints given by a spectrum emission standard. In order to use the above proposed framework with these components, characterizations of the E-band transmitter and the APD are performed. In contrast to typical approaches in the literature, here joint mitigation of the PA and I/Q modulator impairments is used to model the transmitter. Using the developed models, optimal model parameters in terms of output power at the mask limit are determined. Using these as a starting point, we have iteratively optimized operating point of the APD and linearized the E-band transmitter. The experiments demonstrated that the analog predistorter can successfully increase the output power by 35% (1.3 dB) improvement while satisfying the spectrum emission mask

    A fast engineering approach to high efficiency power amplifier linearization for avionics applications

    Get PDF
    This PhD thesis provides a fast engineering approach to the design of digital predistortion (DPD) linearizers from several perspectives: i) enhancing the off-line training performance of open-loop DPD, ii) providing robustness and reducing the computational complexity of the parameters identification subsystem and, iii) importing machine learning techniques to favor the automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters to maximize power efficiency while meeting the linearity specifications. One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring user data (such as images, video, etc.) real-time from the drone to the ground station, large transmission rates are required. The PA is a key element in the transmitter chain to guarantee the data transmission (video, photo, etc.) over a long range from the ground station. The more linear output power, the better the coverage or alternatively, with the same coverage, better SNR allows the use of high-order modulation schemes and thus higher transmission rates are achieved. In the context of UAV wireless communications, the power consumption, size and weight of the payload is of significant importance. Therefore, the PA design has to take into account the compromise among bandwidth, output power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal with this inherent trade-off is to design high efficient amplification topologies and let the PA linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is the preferred solution to both academia and industry, for its high flexibility and linearization performance. In order to save as many computational and power resources as possible, the implementation of an open-loop DPD results a very attractive solution for UAV applications. This thesis contributes to the PA linearization, especially on off-line training for open-loop DPD, by presenting two different methods for reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD function. The first method focuses on the input domain analysis, proposing mesh-selecting (MeS) methods to accurately select the proper samples for a computationally efficient DPD parameter estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method is combined with feature extraction dimensionality reduction technique to allow a computational complexity reduction in the identification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS method has been proved to be of crucial interest when training artificial neural networks (ANN) for DPD purposes, by significantly reducing the ANN training time. The second method involves the use of machine learning techniques in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a high number of free parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to find the best parameter configuration of a generalized memory polynomial behavioral model for DPD. On the other hand, a methodology to conduct a global optimization search is proposed to find the optimum values of a set of key circuit and system level parameters, that properly combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant with the linearity specifications. The advantages of these proposed techniques have been validated through experimental tests and the obtained results are analyzed and discussed along this thesis.Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predistorsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert, ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d'identificació de paràmetres i, iii) incorporació de tècniques d'aprenentatge automàtic per afavorir l'auto-ajustament d'amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llibertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especificacions de linealitat. Una de les parts essencials dels vehicles aeris no tripulats (UAV) _es l’aviònica, sent el radiocontrol un dels primers sistemes presents als UAV. Per transferir dades d'usuari (com ara imatges, vídeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de transmissió grans. El PA _es un element clau de la cadena del transmissor per poder garantir la transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la qual cosa permet l’ús d'esquemes de modulació d'ordres superiors i, per tant, aconseguir velocitats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum de potència, la mida i el pes de la càrrega útil són de vital importància. Per tant, el disseny del PA ha de tenir en compte el compromís entre ample de banda, potència de sortida, linealitat i eficiència energètica (molt crític en dispositius alimentats amb bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat, però no totes dues. Per tant, per afrontar aquest compromís s'utilitzen topologies amplificadores d'alta eficiència i es deixa que el linealitzador s'encarregui de garantir els nivells necessaris de linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d'estalviar tant recursos computacionals com consum de potència, la implementació d'un DPD en lla_c obert resulta una solució molt atractiva per a les aplicacions UAV. Aquesta tesi contribueix a la linealització del PA, especialment a l'entrenament fora de línia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost computacional i augmentar la fiabilitat dels DPDs en llaç obert. El primer mètode se centra en l’anàlisi de l’estadística del senyal d'entrada, proposant mètodes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una estimació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb memòria es pot combinar amb tècniques de reducció del model del DPD i d'aquesta manera poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació per un factor de 65, en comparació amb l’ús de l'algoritme clàssic QR-LS i selecció de mostres d'entrenament consecutives. El segon mètode consisteix en l’ús de tècniques d'aprenentatge automàtic pel disseny del DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D'una banda, l'algorisme d’optimització global adaLIPO s'utilitza per trobar la millor configuració de paràmetres d'un model polinomial amb memòria generalitzat per a DPD. D'altra banda, es proposa una estratègia per l’optimització global d'un conjunt de paràmetres clau per al disseny a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del factor de cresta, poden maximitzar l’eficiència de PAs d'entrada dual de gran ample de banda, alhora que compleixen les especificacions de linealitat. Els avantatges d'aquestes tècniques proposades s'han validat mitjançant proves experimentals i els resultats obtinguts s'analitzen i es discuteixen al llarg d'aquesta tesi
    • …
    corecore