10,773 research outputs found

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    On Green Multicasting over Cognitive Radio Fading Channels

    Full text link
    In this paper, an underlay cognitive radio (CR) multicast network, consisting of a cognitive base station (CBS) and multiple multicast groups of secondary users (SUs), is considered. All SUs, belonging to a particular multicast group, are served by the CBS using a common primary user (PU) channel. The goal is to maximize the energy efficiency (EE) of the system, through dynamic adaptation of target rate and transmit power for each multicast group, under the PUs' individual interference constraints. The optimization problem formulated for this is proved to be non quasi-concave with respect to the joint variation of the CBS's transmit power and target rate. An efficient iterative algorithm for EE maximization is proposed along with its complexity analysis. Simulation results illustrate the performance gain of our proposed scheme.Comment: 5 pages, 4 figures, Submitted in IEEE Transactions on Vehicular Technolog

    Downlink Energy Efficiency of Power Allocation and Wireless Backhaul Bandwidth Allocation in Heterogeneous Small Cell Networks

    Full text link
    The widespread application of wireless services and dense devices access have triggered huge energy consumption. Because of the environmental and financial considerations, energy-efficient design in wireless networks becomes an inevitable trend. To the best of the authors' knowledge, energy-efficient orthogonal frequency division multiple access heterogeneous small cell optimization comprehensively considering energy efficiency maximization, power allocation, wireless backhaul bandwidth allocation, and user Quality of Service is a novel approach and research direction, and it has not been investigated. In this paper, we study the energy-efficient power allocation and wireless backhaul bandwidth allocation in orthogonal frequency division multiple access heterogeneous small cell networks. Different from the existing resource allocation schemes that maximize the throughput, the studied scheme maximizes energy efficiency by allocating both transmit power of each small cell base station to users and bandwidth for backhauling, according to the channel state information and the circuit power consumption. The problem is first formulated as a non-convex nonlinear programming problem and then it is decomposed into two convex subproblems. A near optimal iterative resource allocation algorithm is designed to solve the resource allocation problem. A suboptimal low-complexity approach is also developed by exploring the inherent structure and property of the energy-efficient design. Simulation results demonstrate the effectiveness of the proposed algorithms by comparing with the existing schemes.Comment: to appear in IEEE Transactions on Communication

    Energy-Efficient Power Allocation in Cognitive Radio Systems with Imperfect Spectrum Sensing

    Full text link
    This paper studies energy-efficient power allocation schemes for secondary users in sensing-based spectrum sharing cognitive radio systems. It is assumed that secondary users first perform channel sensing possibly with errors and then initiate data transmission with different power levels based on sensing decisions. The circuit power is taken into account in total power consumption. In this setting, the optimization problem is to maximize energy efficiency (EE) subject to peak/average transmission power constraints and peak/average interference constraints. By exploiting quasiconcave property of EE maximization problem, the original problem is transformed into an equivalent parameterized concave problem and an iterative power allocation algorithm based on Dinkelbach's method is proposed. The optimal power levels are identified in the presence of different levels of channel side information (CSI) regarding the transmission and interference links at the secondary transmitter, namely perfect CSI of both transmission and interference links, perfect CSI of the transmission link and imperfect CSI of the interference link, imperfect CSI of both links or only statistical CSI of both links. Through numerical results, the impact of sensing performance, different types of CSI availability, and transmit and interference power constraints on the EE of the secondary users is analyzed

    Multi-Objective Resource Allocation for Secure Communication in Cognitive Radio Networks with Wireless Information and Power Transfer

    Full text link
    In this paper, we study resource allocation for multiuser multiple-input single-output secondary communication systems with multiple system design objectives. We consider cognitive radio networks where the secondary receivers are able to harvest energy from the radio frequency when they are idle. The secondary system provides simultaneous wireless power and secure information transfer to the secondary receivers. We propose a multi-objective optimization framework for the design of a Pareto optimal resource allocation algorithm based on the weighted Tchebycheff approach. In particular, the algorithm design incorporates three important system objectives: total transmit power minimization, energy harvesting efficiency maximization, and interference power leakage-to-transmit power ratio minimization. The proposed framework takes into account a quality of service requirement regarding communication secrecy in the secondary system and the imperfection of the channel state information of potential eavesdroppers (idle secondary receivers and primary receivers) at the secondary transmitter. The adopted multi-objective optimization problem is non-convex and is recast as a convex optimization problem via semidefinite programming (SDP) relaxation. It is shown that the global optimal solution of the original problem can be constructed by exploiting both the primal and the dual optimal solutions of the SDP relaxed problem. Besides, two suboptimal resource allocation schemes for the case when the solution of the dual problem is unavailable for constructing the optimal solution are proposed. Numerical results not only demonstrate the close-to-optimal performance of the proposed suboptimal schemes, but also unveil an interesting trade-off between the considered conflicting system design objectives.Comment: Accepted with minor revisions for publication as a regular paper in the IEEE Transactions on Vehicular Technolog

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    Energy-Efficient Power Loading for OFDM-based Cognitive Radio Systems with Channel Uncertainties

    Full text link
    In this paper, we propose a novel algorithm to optimize the energy-efficiency (EE) of orthogonal frequency division multiplexing-based cognitive radio systems under channel uncertainties. We formulate an optimization problem that guarantees a minimum required rate and a specified power budget for the secondary user (SU), while restricting the interference to primary users (PUs) in a statistical manner. The optimization problem is non-convex and it is transformed to an equivalent problem using the concept of fractional programming. Unlike all related works in the literature, we consider the effect of imperfect channel-stateinformation (CSI) on the links between the SU transmitter and receiver pairs and we additionally consider the effect of limited sensing capabilities of the SU. Since the interference constraints are met statistically, the SU transmitter does not require perfect CSI feedback from the PUs receivers. Simulation results sho w that the EE deteriorates as the channel estimation error increases. Comparisons with relevant works from the literature show that the interference thresholds at the PUs receivers can be severely exceeded and the EE is slightly deteriorated if the SU does no t account for spectrum sensing errors.Comment: TV

    Secure and Green SWIPT in Distributed Antenna Networks with Limited Backhaul Capacity

    Full text link
    This paper studies the resource allocation algorithm design for secure information and renewable green energy transfer to mobile receivers in distributed antenna communication systems. In particular, distributed remote radio heads (RRHs/antennas) are connected to a central processor (CP) via capacity-limited backhaul links to facilitate joint transmission. The RRHs and the CP are equipped with renewable energy harvesters and share their energies via a lossy micropower grid for improving the efficiency in conveying information and green energy to mobile receivers via radio frequency (RF) signals. The considered resource allocation algorithm design is formulated as a mixed non-convex and combinatorial optimization problem taking into account the limited backhaul capacity and the quality of service requirements for simultaneous wireless information and power transfer (SWIPT). We aim at minimizing the total network transmit power when only imperfect channel state information of the wireless energy harvesting receivers, which have to be powered by the wireless network, is available at the CP. In light of the intractability of the problem, we reformulate it as an optimization problem with binary selection, which facilitates the design of an iterative resource allocation algorithm to solve the problem optimally using the generalized Bender's decomposition (GBD). Furthermore, a suboptimal algorithm is proposed to strike a balance between computational complexity and system performance. Simulation results illustrate that the proposed GBD based algorithm obtains the global optimal solution and the suboptimal algorithm achieves a close-to-optimal performance. Besides, the distributed antenna network for SWIPT with renewable energy sharing is shown to require a lower transmit power compared to a traditional system with multiple co-located antennas.Comment: accepted for publication, IEEE Transactions on Wireless Communications, May 10, 201
    • …
    corecore