14 research outputs found

    Improved Linear Crosstalk Precompensation for DSL

    Get PDF
    Crosstalk is the major source of performance degradation in next generation DSL systems such as VDSL. In downstream communications transmitting modems are co- located at the central office. This allows crosstalk precompensation to be employed. In crosstalk precompensation the transmitted signal is pre-distorted such that the pre-distortion destructively interferes with the crosstalk introduced by the channel. Existing crosstalk precompensation techniques either give poor performance or require modification of customer premises equipment (CPE). This is impractical since there are millions of legacy CPE modems already in use. We present a novel crosstalk precompensation technique based on a diagonalization of the crosstalk channel matrix. This technique does not require modification of CPE. Furthermore, certain properties of the DSL channel ensure that this diagonalizing precompensator achieves near-optimal performance

    Green and fast DSL via joint processing of multiple lines and time–frequency packed modulation

    Get PDF
    In this paper, strategies to enhance the performance, in terms of available data-rate per user, energy efficiency, and spectral efficiency, of current digital subscriber lines (DSL) are proposed. In particular, a system wherein a group of copper wires is jointly processed at both ends of the communication link is considered. For such a scenario, a resource allocation scheme aimed at energy efficiency maximization is proposed, and, moreover, time–frequency packed modulation schemes are investigated for increased spectral efficiency. Results show that a joint processing of even a limited number of wires at both ends of the communication links brings remarkable performance improvements with respect to the case of individual point-to-point DSL connections; moreover, the considered solution does represent a viable means to increase, in the short term, the data-rate of the wired access network, without an intensive (and expensive) deployment of optical links

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented
    corecore