135 research outputs found

    A low-complexity eigenfilter design method for channel shortening equalizers for DMT systems

    Get PDF
    We present a new low-complexity method for the design of channel shortening equalizers for discrete multitone (DMT) modulation systems using the eigenfilter approach. In contrast to other such methods which require a Cholesky decomposition for each delay parameter value used, ours requires only one such decomposition. Simulation results show that our method performs nearly optimally in terms of observed bit rate

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    Frequency Spreading Equalization in Multicarrier Massive MIMO

    Full text link
    Application of filter bank multicarrier (FBMC) as an effective method for signaling over massive MIMO channels has been recently proposed. This paper further expands the application of FBMC to massive MIMO by applying frequency spreading equalization (FSE) to these channels. FSE allows us to achieve a more accurate equalization. Hence, higher number of bits per symbol can be transmitted and the bandwidth of each subcarrier can be widened. Widening the bandwidth of each subcarrier leads to (i) higher bandwidth efficiency; (ii) lower complexity; (iii) lower sensitivity to carrier frequency offset (CFO); (iv) reduced peak-to-average power ratio (PAPR); and (iv) reduced latency. All these appealing advantages have a direct impact on the digital as well as analog circuitry that is needed for the system implementation. In this paper, we develop the mathematical formulation of the minimum mean square error (MMSE) FSE for massive MIMO systems. This analysis guides us to decide on the number of subcarriers that will be sufficient for practical channel models.Comment: Accepted in IEEE ICC 2015 - Workshop on 5G & Beyond - Enabling Technologies and Application

    Joint transceiver design for MIMO channel shortening.

    Get PDF
    Channel shortening equalizers can be employed to shorten the effective impulse response of a long intersymbol interference (ISI) channel in order, for example, to decrease the computational complexity of a maximum-likelihood sequence estimator (MLSE) or to increase the throughput efficiency of an orthogonal frequency-division multiplexing (OFDM) transmission scheme. In this paper, the issue of joint transmitter–receiver filter design is addressed for shortening multiple-input multiple-output (MIMO) ISI channels. A frequency-domain approach is adopted for the transceiver design which is effectively equivalent to an infinite-length time-domain design. A practical space–frequency waterfilling algorithm is also provided. It is demonstrated that the channel shortening equalizer designed according to the time-domain approach suffers from an error-floor effect. However, the proposed techniques are shown to overcome this problem and outperform the time-domain channel shortening filter design. We also demonstrate that the proposed transceiver design can be considered as a MIMO broadband beamformer with constraints on the time-domain multipath length. Hence, a significant diversity gain could also be achieved by choosing strong eigenmodes of the MIMO channel. It is also found that the proposed frequency-domain methods have considerably low computational complexity as compared with their time-domain counterparts
    corecore