5,117 research outputs found

    A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems

    Full text link
    [EN] Traditional Minimum Mean Square Error (MMSE) detection is widely used in wireless communications, however, it introduces matrix inversion and has a higher computational complexity. For massive Multiple-input Multiple-output (MIMO) systems, this detection complexity is very high due to its huge channel matrix dimension. Therefore, low-complexity detection technology has become a hot topic in the industry. Aiming at the problem of high computational complexity of the massive MIMO channel estimation, this paper presents a low-complexity algorithm for efficient channel estimation. The proposed algorithm is based on joint Singular Value Decomposition (SVD) and Iterative Least Square with Projection (SVD-ILSP) which overcomes the drawback of finite sample data assumption of the covariance matrix in the existing SVD-based semi-blind channel estimation scheme. Simulation results show that the proposed scheme can effectively reduce the deviation, improve the channel estimation accuracy, mitigate the impact of pilot contamination and obtain accurate CSI with low overhead and computational complexity.This research was funded by Ministerio de Economia, Industria y Competitividad, Gobierno de Espana grant number BIA2017-87573-C2-2-P.Bangash, K.; Khan, I.; Lloret, J.; León Fernández, A. (2018). A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems. Electronics. 7(10). https://doi.org/10.3390/electronics7100218S710Gao, Z., Dai, L., Lu, Z., Yuen, C., & Wang, Z. (2014). Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations. IEEE Communications Letters, 18(7), 1266-1269. doi:10.1109/lcomm.2014.2325027Biswas, S., Masouros, C., & Ratnarajah, T. (2016). Performance Analysis of Large Multiuser MIMO Systems With Space-Constrained 2-D Antenna Arrays. IEEE Transactions on Wireless Communications, 15(5), 3492-3505. doi:10.1109/twc.2016.2522419Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092Khan, I., & Singh, D. (2018). Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU - International Journal of Electronics and Communications, 89, 181-190. doi:10.1016/j.aeue.2018.03.038Khan, I., Singh, M., & Singh, D. (2018). Compressive Sensing-based Sparsity Adaptive Channel Estimation for 5G Massive MIMO Systems. Applied Sciences, 8(5), 754. doi:10.3390/app8050754Arshad, M., Khan, I., Lloret, J., & Bosch, I. (2018). A Novel Multi-User Codebook Design for 5G in 3D-MIMO Heterogeneous Networks. Electronics, 7(8), 144. doi:10.3390/electronics7080144Shahjehan, W., Shah, S., Lloret, J., & Bosch, I. (2018). Joint Interference and Phase Alignment among Data Streams in Multicell MIMO Broadcasting. Applied Sciences, 8(8), 1237. doi:10.3390/app8081237Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot Contamination and Precoding in Multi-Cell TDD Systems. IEEE Transactions on Wireless Communications, 10(8), 2640-2651. doi:10.1109/twc.2011.060711.101155Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. 2009 IEEE International Symposium on Information Theory. doi:10.1109/isit.2009.5205814Jose, J., Ashikhmin, A., Whiting, P., & Vishwanath, S. (2011). Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems. IEEE Transactions on Vehicular Technology, 60(5), 2102-2116. doi:10.1109/tvt.2011.2146797Marzetta, T. L. (2010). Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9(11), 3590-3600. doi:10.1109/twc.2010.092810.091092Rusek, F., Persson, D., Buon Kiong Lau, Larsson, E. G., Marzetta, T. L., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Processing Magazine, 30(1), 40-60. doi:10.1109/msp.2011.2178495Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. (2017). Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. IEEE Transactions on Green Communications and Networking, 1(2), 121-130. doi:10.1109/tgcn.2017.2696161Prasad, K. N. R. S. V., Hossain, E., & Bhargava, V. K. (2017). Energy Efficiency in Massive MIMO-Based 5G Networks: Opportunities and Challenges. IEEE Wireless Communications, 24(3), 86-94. doi:10.1109/mwc.2016.1500374wcFodor, G., Rajatheva, N., Zirwas, W., Thiele, L., Kurras, M., Guo, K., … De Carvalho, E. (2017). An Overview of Massive MIMO Technology Components in METIS. IEEE Communications Magazine, 55(6), 155-161. doi:10.1109/mcom.2017.1600802Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742-758. doi:10.1109/jstsp.2014.2317671Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186-195. doi:10.1109/mcom.2014.6736761Yi Xu, Guosen Yue, & Shiwen Mao. (2014). User Grouping for Massive MIMO in FDD Systems: New Design Methods and Analysis. IEEE Access, 2, 947-959. doi:10.1109/access.2014.2353297Duly, A. J., Kim, T., Love, D. J., & Krogmeier, J. V. (2014). Closed-Loop Beam Alignment for Massive MIMO Channel Estimation. IEEE Communications Letters, 18(8), 1439-1442. doi:10.1109/lcomm.2014.2316157Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802-814. doi:10.1109/jstsp.2014.2313020Noh, S., Zoltowski, M. D., & Love, D. J. (2016). Training Sequence Design for Feedback Assisted Hybrid Beamforming in Massive MIMO Systems. IEEE Transactions on Communications, 64(1), 187-200. doi:10.1109/tcomm.2015.2498184Jiang, Z., Molisch, A. F., Caire, G., & Niu, Z. (2015). Achievable Rates of FDD Massive MIMO Systems With Spatial Channel Correlation. IEEE Transactions on Wireless Communications, 14(5), 2868-2882. doi:10.1109/twc.2015.2396058Adhikary, A., Junyoung Nam, Jae-Young Ahn, & Caire, G. (2013). Joint Spatial Division and Multiplexing—The Large-Scale Array Regime. IEEE Transactions on Information Theory, 59(10), 6441-6463. doi:10.1109/tit.2013.2269476Talwar, S., Viberg, M., & Paulraj, A. (1996). Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms. IEEE Transactions on Signal Processing, 44(5), 1184-1197. doi:10.1109/78.502331Comon, P., & Golub, G. H. (1990). Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8), 1327-1343. doi:10.1109/5.5832

    Joint Angle and Delay Estimation for 3D Massive MIMO Systems Based on Parametric Channel Modeling

    Get PDF
    Mobile data traffic is predicted to have an exponential growth in the future. In order to meet the challenge as well as the form factor limitation on the base station, 3D massive MIMO has been proposed as one of the enabling technologies to significantly increase the spectral efficiency of a wireless system. In massive MIMO systems, a base station will rely on the uplink sounding signals from mobile stations to figure out the spatial information to perform MIMO beam-forming. Accordingly, multi-dimensional parameter estimation of a MIMO wireless channel becomes crucial for such systems to realize the predicted capacity gains. In this thesis, we study separated and joint angle and delay estimation for 3D massive MIMO systems in mobile wireless communications. To be specific, we first introduce a separated low complexity time delay and angle estimation algorithm based on unitary transformation and derive the mean square error (MSE) for delay and angle estimation in the millimeter wave massive MIMO system. Furthermore, a matrix-based ESPRIT-type algorithm is applied to jointly estimate delay and angle, the mean square error (MSE) of which is also analyzed. Finally, we found that azimuth estimation is more vulnerable compared to elevation estimation. Simulation results suggest that the dimension of the underlying antenna array at the base station plays a critical role in determining the estimation performance. These insights will be useful for designing practical massive MIMO systems in future mobile wireless communications

    Achieving Low-Complexity Maximum-Likelihood Detection for the 3D MIMO Code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the ML decoding performance can be achieved with a complexity of O(M^{4.5}) instead of O(M^8) in quasi static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration

    MmWave Massive MIMO Based Wireless Backhaul for 5G Ultra-Dense Network

    Get PDF
    Ultra-dense network (UDN) has been considered as a promising candidate for future 5G network to meet the explosive data demand. To realize UDN, a reliable, Gigahertz bandwidth, and cost-effective backhaul connecting ultra-dense small-cell base stations (BSs) and macro-cell BS is prerequisite. Millimeter-wave (mmWave) can provide the potential Gbps traffic for wireless backhaul. Moreover, mmWave can be easily integrated with massive MIMO for the improved link reliability. In this article, we discuss the feasibility of mmWave massive MIMO based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. Especially, we propose a digitally-controlled phase-shifter network (DPSN) based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macro-cell BS can simultaneously support multiple small-cell BSs with multiple streams for each smallcell BS, which is essentially different from conventional hybrid precoding/combining schemes typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospect to enable the mmWave massive MIMO based wireless backhaul for 5G UDN are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. This paper is related to 5G, ultra-dense network (UDN), millimeter waves (mmWave) fronthaul/backhaul, massive MIMO, sparsity/low-rank property of mmWave massive MIMO channels, sparse channel estimation, compressive sensing (CS), hybrid digital/analog precoding/combining, and hybrid beamforming. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=730653

    Optimization of Massive Full-Dimensional MIMO for Positioning and Communication

    Full text link
    Massive Full-Dimensional multiple-input multiple-output (FD-MIMO) base stations (BSs) have the potential to bring multiplexing and coverage gains by means of three-dimensional (3D) beamforming. Key technical challenges for their deployment include the presence of limited-resolution front ends and the acquisition of channel state information (CSI) at the BSs. This paper investigates the use of FD-MIMO BSs to provide simultaneously high-rate data communication and mobile 3D positioning in the downlink. The analysis concentrates on the problem of beamforming design by accounting for imperfect CSI acquisition via Time Division Duplex (TDD)-based training and for the finite resolution of analog-to-digital converter (ADC) and digital-to-analog converter (DAC) at the BSs. Both \textit{unstructured beamforming} and a low-complexity \textit{Kronecker beamforming} solution are considered, where for the latter the beamforming vectors are decomposed into separate azimuth and elevation components. The proposed algorithmic solutions are based on Bussgang theorem, rank-relaxation and successive convex approximation (SCA) methods. Comprehensive numerical results demonstrate that the proposed schemes can effectively cater to both data communication and positioning services, providing only minor performance degradations as compared to the more conventional cases in which either function is implemented. Moreover, the proposed low-complexity Kronecker beamforming solutions are seen to guarantee a limited performance loss in the presence of a large number of BS antennas.Comment: 30 pages, 6 figure
    • …
    corecore