1,263 research outputs found

    Hardward and algorithm architectures for real-time additive synthesis

    Get PDF
    Additive synthesis is a fundamental computer music synthesis paradigm tracing its origins to the work of Fourier and Helmholtz. Rudimentary implementation linearly combines harmonic sinusoids (or partials) to generate tones whose perceived timbral characteristics are a strong function of the partial amplitude spectrum. Having evolved over time, additive synthesis describes a collection of algorithms each characterised by the time-varying linear combination of basis components to generate temporal evolution of timbre. Basis components include exactly harmonic partials, inharmonic partials with time-varying frequency or non-sinusoidal waveforms each with distinct spectral characteristics. Additive synthesis of polyphonic musical instrument tones requires a large number of independently controlled partials incurring a large computational overhead whose investigation and reduction is a key motivator for this work. The thesis begins with a review of prevalent synthesis techniques setting additive synthesis in context and introducing the spectrum modelling paradigm which provides baseline spectral data to the additive synthesis process obtained from the analysis of natural sounds. We proceed to investigate recursive and phase accumulating digital sinusoidal oscillator algorithms, defining specific metrics to quantify relative performance. The concepts of phase accumulation, table lookup phase-amplitude mapping and interpolated fractional addressing are introduced and developed and shown to underpin an additive synthesis subclass - wavetable lookup synthesis (WLS). WLS performance is simulated against specific metrics and parameter conditions peculiar to computer music requirements. We conclude by presenting processing architectures which accelerate computational throughput of specific WLS operations and the sinusoidal additive synthesis model. In particular, we introduce and investigate the concept of phase domain processing and present several “pipeline friendly” arithmetic architectures using this technique which implement the additive synthesis of sinusoidal partials

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing

    Serial-data computation in VLSI

    Get PDF

    Compromising emissions from a high speed cryptographic embedded system

    Get PDF
    Specific hardware implementations of cryptographic algorithms have been subject to a number of “side channel” attacks of late. A side channel is any information bearing emission that results from the physical implementation of a cryptographic algorithm. Smartcard realisations have been shown to be particularly vulnerable to these attacks. Other more complex embedded cryptographic systems may also be vulnerable, and each new design needs to be tested. The vulnerability of a recently developed high speed cryptographic accelerator is examined. The purpose of this examination is not only to verify the integrity of the device, but also to allow its designers to make a determination of its level of conformance with any standard that they may wish to comply with. A number of attacks were reviewed initially and two were chosen for examination and implementation - Power Analysis and Electromagnetic Analysis. These particular attacks appeared to offer the greatest threat to this particular system. Experimental techniques were devised to implement these attacks and a simulation and micrcontroller emulation were setup to ensure these techniques were sound. Each experimental setup was successful in attacking the simulated data and the micrcontroller circuit. The significance of this was twofold in that it verified the integrity of the setup and proved that a real threat existed. However, the attacks on the cryptographic accelerator failed in all cases to reveal any significant information. Although this is considered a positive result, it does not prove the integrity of the device as it may be possible for an adversary with more resources to successfully attack the board. It does however increase the level of confidence in this particular product and acts as a stepping stone towards conformance of cryptographic standards. The experimental procedures developed can also be used by designers wishing to test the vulnerability of their own products to these attacks
    corecore