71 research outputs found

    Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review

    Get PDF
    The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of stateof-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages and disadvantages. The similarities and differences of each scheme are investigated on the basis of significant parameters, namely, localization accuracy, computational cost, communication cost, and number of samples. We discuss the challenges and direction of the future research work for each parameter

    Evaluation of efficient vehicular ad hoc networks based on a maximum distance routing algorithm

    Get PDF
    Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-hop basis based on the maximum distance toward the destination from the sender and sufficient communication lifetime, which guarantee the completion of the data transmission process. Moreover, communication overhead is minimized by finding the next hop and forwarding the packet directly to it without the need to discover the whole route first. A comparison is performed between MDORA and ad hoc on-demand distance vector (AODV) protocol in terms of throughput, packet delivery ratio, delay, and communication overhead. The outcome of the proposed algorithm is better than that of AODV

    An Investigation of IoT Importance and Viability of Health Records Retrieval using Electronic Tags in Pilgrimage

    Get PDF
    Healthcare services is one of most important domains in the world. One of most crucial aspects of healthcare services is the need to make accurate healthcare decisions at the right time. Retrieving useful historical health records of patients in real-time is necessary to provide accurate healthcare decisions. Traditional health record systems such as paperbased system require time and effort to collect, manage, and retrieve patients’ records. Electronic health record systems were adopted to allow healthcare staff to retrieve useful health records in real-time and consequently improve and speed up healthcare services. Although EHR is effective to serve patients in their local countries, the implementation of EHR for global purposes is still an issue and EHR is not always applicable for people who travel to other countries. One of the most important purposes for Muslims to travel is the pilgrimage journey to the Kingdom of Saudi Arabia (KSA) to perform religious rites. The millions of pilgrims converging there may need healthcare services and these services should be accomplished accurately in real-time which require electronic-based historical health records approaches. This study aims to investigate the importance and viability of IoT implementati ons to support retrieval of pilgrims’ EHR using electronic tags. A questionnaire with 60 academic staff and interview with five experts from KSA were conducted to address the main aim of this study. The significance of the results shows that EHR supporting tag reading is a promising solution to enhance healthcare services and counter the challenges of EHR implementations in pilgrimage

    Hybrid Airship Multi-Role (HAMR) Anti-Submarine Warfare (ASW) mission capability

    Get PDF
    The Hybrid Airship Multi-Role (HAMR) Anti-Submarine Warfare (ASW) Mission Module project applies established systems engineering principles and processes to the design of an ASW payload module that examines the capability of the HAMR to perform persistent ASW mission support. Critical system functions and objectives are identified and are assigned appropriate quantitative metrics. Additionally, three alternative architectures are generated and evaluated using the appropriate metrics based on results from modeling using Naval Systems Simulation (NSS). Manning is considered as a key stakeholder parameter and is included as an evaluation concern. The alternatives are also compared through the examination of life cycle costs. The recommendation to the stakeholders based on the research and results is an unmanned ASW sensor platform that uses other ASW assets for prosecution.http://archive.org/details/hybridairshipmul109456935N

    Coverage problems in mobile sensing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 177-183).Sensor-networks can today measure physical phenomena at spatial and temporal scales that were not achievable earlier, and have shown promise in monitoring the environment, structures, agricultural fields and so on. A key challenge in sensor-networks is the coordination of four actions across the network: measurement (sensing), communication, motion and computation. The term coverage is applied to the central question of how well a sensor-network senses some phenomenon to make inferences. More formally, a coverage problem involves finding an arrangement of sensors that optimizes a coverage metric. In this thesis we examine coverage in the context of three sensing modalities. The literature on the topic has thus far focused largely on coverage problems with the first modality: static event-detection sensors, which detect purely binary events in their immediate vicinity based on thresholds. However, coverage problems for sensors which measure physical quantities like temperature, pressure, chemical concentrations, light intensity and so on in a network configuration have received limited attention in the literature. We refer to this second modality of sensors as estimation sensors; local estimates from such sensors can be used to reconstruct a field. Third, there has been recent interest in deploying sensors on mobile platforms. Mobility has the effect of increasing the effectiveness of sensing actions. We further classify sensor mobility into incidental and intentional motion. Incidentally mobile sensors move passively under the influence of the environment, for instance, a floating sensor drifting in the sea. We define intentional mobility as the ability to control the location and trajectory of the sensor, for example by mounting it on a mobile robot. We build our analysis on a series of cases. We first analyze coverage and connectivity of a network of floating sensors in rivers using simulations and experimental data, and give guidelines for sensor-network design. Second, we examine intentional mobility and detection sensors.(cont.) We examine the problem of covering indoor and outdoor pathways with reconfigurable camera sensor-networks. We propose and validate an empirical model for detection behavior of cameras. We propose a distributed algorithm for reconfiguring locations of cameras to maximize detection performance. Finally, we examine more general strategies for the placement of estimation sensors and ask when and where to take samples in order to estimate an unknown spatiotemporal field with tolerable estimation errors. We discuss various classes of error-tolerant sensor arrangements for trigonometric polynomial fields.by Ajay A. Deshpande.Ph.D

    Nomadic fog storage

    Get PDF
    Mobile services incrementally demand for further processing and storage. However, mobile devices are known for their constrains in terms of processing, storage, and energy. Early proposals have addressed these aspects; by having mobile devices access remote clouds. But these proposals suffer from long latencies and backhaul bandwidth limitations in retrieving data. To mitigate these issues, edge clouds have been proposed. Using this paradigm, intermediate nodes are placed between the mobile devices and the remote cloud. These intermediate nodes should fulfill the end users’ resource requests, namely data and processing capability, and reduce the energy consumption on the mobile devices’ batteries. But then again, mobile traffic demand is increasing exponentially and there is a greater than ever evolution of mobile device’s available resources. This urges the use of mobile nodes’ extra capabilities for fulfilling the requisites imposed by new mobile applications. In this new scenario, the mobile devices should become both consumers and providers of the emerging services. The current work researches on this possibility by designing, implementing and testing a novel nomadic fog storage system that uses fog and mobile nodes to support the upcoming applications. In addition, a novel resource allocation algorithm has been developed that considers the available energy on mobile devices and the network topology. It also includes a replica management module based on data popularity. The comprehensive evaluation of the fog proposal has evidenced that it is responsive, offloads traffic from the backhaul links, and enables a fair energy depletion among mobiles nodes by storing content in neighbor nodes with higher battery autonomy.Os serviços móveis requerem cada vez mais poder de processamento e armazenamento. Contudo, os dispositivos móveis são conhecidos por serem limitados em termos de armazenamento, processamento e energia. Como solução, os dispositivos móveis começaram a aceder a estes recursos através de nuvens distantes. No entanto, estas sofrem de longas latências e limitações na largura de banda da rede, ao aceder aos recursos. Para resolver estas questões, foram propostas soluções de edge computing. Estas, colocam nós intermediários entre os dispositivos móveis e a nuvem remota, que são responsáveis por responder aos pedidos de recursos por parte dos utilizadores finais. Dados os avanços na tecnologia dos dispositivos móveis e o aumento da sua utilização, torna-se cada mais pertinente a utilização destes próprios dispositivos para fornecer os serviços da nuvem. Desta forma, o dispositivo móvel torna-se consumidor e fornecedor do serviço nuvem. O trabalho atual investiga esta vertente, implementado e testando um sistema que utiliza dispositivos móveis e nós no “fog”, para suportar os serviços móveis emergentes. Foi ainda implementado um algoritmo de alocação de recursos que considera os níveis de energia e a topologia da rede, bem como um módulo que gere a replicação de dados no sistema de acordo com a sua popularidade. Os resultados obtidos provam que o sistema é responsivo, alivia o tráfego nas ligações no core, e demonstra uma distribuição justa do consumo de energia no sistema através de uma disseminação eficaz de conteúdo nos nós da periferia da rede mais próximos dos nós consumidores

    Energy-Efficient Self-Organization of Wireless Acoustic Sensor Networks for Ground Target Tracking

    Get PDF
    With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries
    corecore