2,759 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Reliable Linear, Sesquilinear and Bijective Operations On Integer Data Streams Via Numerical Entanglement

    Get PDF
    A new technique is proposed for fault-tolerant linear, sesquilinear and bijective (LSB) operations on MM integer data streams (M≥3M\geq3), such as: scaling, additions/subtractions, inner or outer vector products, permutations and convolutions. In the proposed method, the MM input integer data streams are linearly superimposed to form MM numerically-entangled integer data streams that are stored in-place of the original inputs. A series of LSB operations can then be performed directly using these entangled data streams. The results are extracted from the MM entangled output streams by additions and arithmetic shifts. Any soft errors affecting any single disentangled output stream are guaranteed to be detectable via a specific post-computation reliability check. In addition, when utilizing a separate processor core for each of the MM streams, the proposed approach can recover all outputs after any single fail-stop failure. Importantly, unlike algorithm-based fault tolerance (ABFT) methods, the number of operations required for the entanglement, extraction and validation of the results is linearly related to the number of the inputs and does not depend on the complexity of the performed LSB operations. We have validated our proposal in an Intel processor (Haswell architecture with AVX2 support) via fast Fourier transforms, circular convolutions, and matrix multiplication operations. Our analysis and experiments reveal that the proposed approach incurs between 0.03%0.03\% to 7%7\% reduction in processing throughput for a wide variety of LSB operations. This overhead is 5 to 1000 times smaller than that of the equivalent ABFT method that uses a checksum stream. Thus, our proposal can be used in fault-generating processor hardware or safety-critical applications, where high reliability is required without the cost of ABFT or modular redundancy.Comment: to appear in IEEE Trans. on Signal Processing, 201

    Optimizing Lossy Compression Rate-Distortion from Automatic Online Selection between SZ and ZFP

    Full text link
    With ever-increasing volumes of scientific data produced by HPC applications, significantly reducing data size is critical because of limited capacity of storage space and potential bottlenecks on I/O or networks in writing/reading or transferring data. SZ and ZFP are the two leading lossy compressors available to compress scientific data sets. However, their performance is not consistent across different data sets and across different fields of some data sets: for some fields SZ provides better compression performance, while other fields are better compressed with ZFP. This situation raises the need for an automatic online (during compression) selection between SZ and ZFP, with a minimal overhead. In this paper, the automatic selection optimizes the rate-distortion, an important statistical quality metric based on the signal-to-noise ratio. To optimize for rate-distortion, we investigate the principles of SZ and ZFP. We then propose an efficient online, low-overhead selection algorithm that predicts the compression quality accurately for two compressors in early processing stages and selects the best-fit compressor for each data field. We implement the selection algorithm into an open-source library, and we evaluate the effectiveness of our proposed solution against plain SZ and ZFP in a parallel environment with 1,024 cores. Evaluation results on three data sets representing about 100 fields show that our selection algorithm improves the compression ratio up to 70% with the same level of data distortion because of very accurate selection (around 99%) of the best-fit compressor, with little overhead (less than 7% in the experiments).Comment: 14 pages, 9 figures, first revisio

    Dual link image coding for earth observation satellites

    Get PDF
    The conventional strategy to download images captured by satellites is to compress the data on board and then transmit them via the downlink. It often happens that the capacity of the downlink is too small to accommodate all the acquired data, so the images are trimmed and/or transmitted through lossy regimes. This paper introduces a coding system that increases the amount and quality of the downloaded imaging data. The main insight of this paper is to use both the uplink and the downlink to code the images. The uplink is employed to send reference information to the satellite so that the onboard coding system can achieve higher efficiency. This reference information is computed on the ground, possibly employing extensive data and computational resources. The proposed system is called dual link image coding. As it is devised in this paper, it is suitable for Earth observation satellites with polar orbits. Experimental results obtained for data sets acquired by the Landsat 8 satellite indicate significant coding gains with respect to conventional methods
    • …
    corecore