204 research outputs found

    Statics and dynamics of electrothermal micromirrors

    Full text link
    Adaptive and smart systems are growing in popularity as we shift toward personalization as a culture. With progressive demands on energy efficiency, it is increasingly important to focus on the utilization of energy in a novel way. This thesis investigates a microelectromechanical system (MEMS) mirror with the express intent to provide flexibility in solid state lighting (SSL). By coupling the micromirror to an optical source, the reflected light may be reshaped and directed so as to optimize the overall illumination profile. In addition, the light may be redirected in order to provide improved signal strength in visible light communications (VLC) with negligible impact on energy demands. With flexibility and full analog control in mind, the design of a fully integrated tip-tilt-piston micromirror with an additional variable focus degree of freedom is outlined. Electrothermal actuators are used to both steer the light and tune the focal length. A detailed discussion of the underlying physics behind composite beams and thermal actuators is addressed. This leads directly into an overview of the two main mirror components, namely the segmented mirror and the deflection actuators. An in-depth characterization of the dynamics of the mirror is discussed including the linearity of the thermal response. Frequency domain analysis of such a system provides insight into tunable mechanical properties such as the resonant frequency and quality factor. The degenerate resonant modes can be separated significantly. It is shown that the frequency response may be tuned by straining specific actuators and that it follows a predictable pattern. As a result, the system can be scanned at increasingly large angles. In other words, coupled mechanical modes allow variable damping and amplification. A means to determine the level of coupling is examined and the mode shape variations are tracked as a function of the tuning parameters. Finally, the applications of such a device are explored and tested. Such applications include reliable signal-to-noise ratio (SNR) enhancements in VLC of 30 dB and color tunable steerable lights using laser diodes. A brief discussion of the implications of dynamic illumination and tunable systems is juxtaposed with an explanation behind the integration of an electrothermal micromirror and an all digital driver

    Embedded charge for microswitch applications

    Get PDF
    In this work a micro-electro-mechanical system (MEMS) is proposed for radio frequency (RF) switching applications. MEMS devices outperform the traditionally used solid-state devices in areas such as isolation, insertion loss, and linearity. However, micro switches suffer from high actuation voltage, lifetime limitations, and high packaging cost. A novel micro switch design that incorporates embedded charge in a cantilever structure can, in principle, enable low-voltage operation. This was the primary motivation for this stud

    RF-MEMS switches for reconfigurable antennas

    Get PDF
    Reconfigurable antennas are attractive for many military and commercial applications where it is required to have a single antenna that can be dynamically reconfigured to transmit or receive on multiple frequency bands and patterns. RF-MEMS is a promising technology that has the potential to revolutionize RF and microwave system implementation for next generation telecommunication applications. Despite the efforts of top industrial and academic labs, commercialization of RFMEMS switches has lagged expectations. These problems are connected with switch design (high actuation voltage, low restoring force, low power handling), packaging (contamination layers) and actuation control (high impact force, wear, fatique). This Thesis focuses on the design and control of a novel ohmic RF-MEMS switch specified for reconfigurable antennas applications. This new switch design focuses on the failure mechanisms restriction, the simplicity in fabrication, the power handling and consumption, as well as controllability. Finally, significant attention has been paid in the switch’s electromagnetic characteristics. Efficient switch control implies increased reliability. Towards this target three novel control modes are presented. 1) Optimization of a tailored pulse under Taguchi’s statistical method, which produces promising results but is also sensitive to fabrication tolerances. 2) Quantification of resistive damping control mode, which produces better results only during the pull-down phase of the switch while it is possible to be implemented successfully in very stiff devices. 3) The “Hybrid” control mode, which includes both aforementioned techniques, offering outstanding switching control, as well as immunity to fabrication tolerances, allowing an ensemble of switches rendering an antenna reconfigurable, to be used. Another issue that has been addressed throughout this work is the design and optimization of a reconfigurable, in pattern and frequency, three element Yagi-Uda antenna. The optimization of the antenna’s dimensions has been accomplished through the implementation of a novel technique based on Taguchi’s method, capable of systematically searching wider areas, named as “Grid-Taguchi” method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An overview of lidar imaging systems for autonomous vehicles

    Get PDF
    Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.Peer ReviewedPostprint (published version
    • …
    corecore