549 research outputs found

    Hardware Implementations for Symmetric Key Cryptosystems

    Get PDF
    The utilization of global communications network for supporting new electronic applications is growing. Many applications provided over the global communications network involve exchange of security-sensitive information between different entities. Often, communicating entities are located at different locations around the globe. This demands deployment of certain mechanisms for providing secure communications channels between these entities. For this purpose, cryptographic algorithms are used by many of today\u27s electronic applications to maintain security. Cryptographic algorithms provide set of primitives for achieving different security goals such as: confidentiality, data integrity, authenticity, and non-repudiation. In general, two main categories of cryptographic algorithms can be used to accomplish any of these security goals, namely, asymmetric key algorithms and symmetric key algorithms. The security of asymmetric key algorithms is based on the hardness of the underlying computational problems, which usually require large overhead of space and time complexities. On the other hand, the security of symmetric key algorithms is based on non-linear transformations and permutations, which provide efficient implementations compared to the asymmetric key ones. Therefore, it is common to use asymmetric key algorithms for key exchange, while symmetric key counterparts are deployed in securing the communications sessions. This thesis focuses on finding efficient hardware implementations for symmetric key cryptosystems targeting mobile communications and resource constrained applications. First, efficient lightweight hardware implementations of two members of the Welch-Gong (WG) family of stream ciphers, the WG(29,11)\left(29,11\right) and WG-1616, are considered for the mobile communications domain. Optimizations in the WG(29,11)\left(29,11\right) stream cipher are considered when the GF(229)GF\left(2^{29}\right) elements are represented in either the Optimal normal basis type-II (ONB-II) or the Polynomial basis (PB). For WG-1616, optimizations are considered only for PB representations of the GF(216)GF\left(2^{16}\right) elements. In this regard, optimizations for both ciphers are accomplished mainly at the arithmetic level through reducing the number of field multipliers, based on novel trace properties. In addition, other optimization techniques such as serialization and pipelining, are also considered. After this, the thesis explores efficient hardware implementations for digit-level multiplication over binary extension fields GF(2m)GF\left(2^{m}\right). Efficient digit-level GF(2m)GF\left(2^{m}\right) multiplications are advantageous for ultra-lightweight implementations, not only in symmetric key algorithms, but also in asymmetric key algorithms. The thesis introduces new architectures for digit-level GF(2m)GF\left(2^{m}\right) multipliers considering the Gaussian normal basis (GNB) and PB representations of the field elements. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers do not require loading of the two input field elements in advance to computations. This feature results in high throughput fast multiplication in resource constrained applications with limited capacity of input data-paths. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers are considered for both the GNB and PB. In addition, for the GNB representation, new architectures for digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple multipliers are introduced. The new digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple GNB multipliers, respectively, accomplish the multiplication of three and four field elements using the latency required for multiplying two field elements. Furthermore, a new hardware architecture for the eight-ary exponentiation scheme is proposed by utilizing the new digit-level GF(2m)GF\left(2^{m}\right) hybrid-triple GNB multipliers

    High Speed and Low-Complexity Hardware Architectures for Elliptic Curve-Based Crypto-Processors

    Get PDF
    The elliptic curve cryptography (ECC) has been identified as an efficient scheme for public-key cryptography. This thesis studies efficient implementation of ECC crypto-processors on hardware platforms in a bottom-up approach. We first study efficient and low-complexity architectures for finite field multiplications over Gaussian normal basis (GNB). We propose three new low-complexity digit-level architectures for finite field multiplication. Architectures are modified in order to make them more suitable for hardware implementations specially focusing on reducing the area usage. Then, for the first time, we propose a hybrid digit-level multiplier architecture which performs two multiplications together (double-multiplication) with the same number of clock cycles required as the one for one multiplication. We propose a new hardware architecture for point multiplication on newly introduced binary Edwards and generalized Hessian curves. We investigate higher level parallelization and lower level scheduling for point multiplication on these curves. Also, we propose a highly parallel architecture for point multiplication on Koblitz curves by modifying the addition formulation. Several FPGA implementations exploiting these modifications are presented in this thesis. We employed the proposed hybrid multiplier architecture to reduce the latency of point multiplication in ECC crypto-processors as well as the double-exponentiation. This scheme is the first known method to increase the speed of point multiplication whenever parallelization fails due to the data dependencies amongst lower level arithmetic computations. Our comparison results show that our proposed multiplier architectures outperform the counterparts available in the literature. Furthermore, fast computation of point multiplication on different binary elliptic curves is achieved

    Low-Resource and Fast Elliptic Curve Implementations over Binary Edwards Curves

    Get PDF
    Elliptic curve cryptography (ECC) is an ideal choice for low-resource applications because it provides the same level of security with smaller key sizes than other existing public key encryption schemes. For low-resource applications, designing efficient functional units for elliptic curve computations over binary fields results in an effective platform for an embedded co-processor. This thesis investigates co-processor designs for area-constrained devices. Particularly, we discuss an implementation utilizing state of the art binary Edwards curve equations over mixed point addition and doubling. The binary Edwards curve offers the security advantage that it is complete and is, therefore, immune to the exceptional points attack. In conjunction with Montgomery ladder, such a curve is naturally immune to most types of simple power and timing attacks. Finite field operations were performed in the small and efficient Gaussian normal basis. The recently presented formulas for mixed point addition by K. Kim, C. Lee, and C. Negre at Indocrypt 2014 were found to be invalid, but were corrected such that the speed and register usage were maintained. We utilize corrected mixed point addition and doubling formulas to achieve a secure, but still fast implementation of a point multiplication on binary Edwards curves. Our synthesis results over NIST recommended fields for ECC indicate that the proposed co-processor requires about 50% fewer clock cycles for point multiplication and occupies a similar silicon area when compared to the most recent in literature

    Efficient and Low-complexity Hardware Architecture of Gaussian Normal Basis Multiplication over GF(2m) for Elliptic Curve Cryptosystems

    Get PDF
    In this paper an efficient high-speed architecture of Gaussian normal basis multiplier over binary finite field GF(2m) is presented. The structure is constructed by using regular modules for computation of exponentiation by powers of 2 and low-cost blocks for multiplication by normal elements of the binary field. Since the exponents are powers of 2, the modules are implemented by some simple cyclic shifts in the normal basis representation. As a result, the multiplier has a simple structure with a low critical path delay. The efficiency of the proposed structure is studied in terms of area and time complexity by using its implementation on Vertix-4 FPGA family and also its ASIC design in 180nm CMOS technology. Comparison results with other structures of the Gaussian normal basis multiplier verify that the proposed architecture has better performance in terms of speed and hardware utilization

    Subthreshold circuits: Design, implementation and application

    Get PDF
    Digital circuits operating in the subthreshold region of the transistor are being used as an ideal option for ultra low power complementary metal-oxide-semiconductor (CMOS) design. The use of subthreshold circuit design in cryptographic systems is gaining importance as a counter measure to power analysis attacks. A power analysis attack is a non-invasive side channel attack in which the power consumption of the cryptographic system can be analyzed to retrieve the encrypted data. A number of techniques to increase the resistance to power attacks have been proposed at algorithmic and hardware levels, but these techniques suffer from large area and power overheads. The main aim of this research is to understand the viability of implementing subthreshold systems for cryptographic applications. Standard cell libraries in subthreshold are designed and a methodology to identify the minimum energy point, aspect ratio, frequency range and operating voltage for CMOS standard cells is defined. As scalar multiplication is the fundamental operation in elliptic curve cryptographic systems, a digit-level gaussian normal basis (GNB) multiplier is implemented using the aforementioned standard cells. A similar standard-cell library is designed for the multiplier to operate in the superthreshold regime. The subthreshold and superthreshold multipliers are then subjected to a differential power analysis attack. Power performance and signal-to-noise ratio (SNR) of both these systems are compared to evaluate the usefulness of the subthreshold design. The power consumption of the subthreshold multiplier is 4.554 uW, the speed of the multiplier is 65.1 KHz and the SNR is 40 dB. The superthreshold multiplier has a power consumption of 4.005 mW, the speed of the multiplier is 330 MHz and the SNR is 200 dB. Reduced power consumption, hence reduced SNR, increases the resistance of the subthreshold multiplier against power analysis attacks. (Refer to PDF for exact formulas)

    High Speed and Low Latency ECC Implementation over GF(2m) on FPGA

    Get PDF
    In this paper, a novel high-speed elliptic curve cryptography (ECC) processor implementation for point multiplication (PM) on field-programmable gate array (FPGA) is proposed. A new segmented pipelined full-precision multiplier is used to reduce the latency, and the Lopez-Dahab Montgomery PM algorithm is modified for careful scheduling to avoid data dependency resulting in a drastic reduction in the number of clock cycles (CCs) required. The proposed ECC architecture has been implemented on Xilinx FPGAs' Virtex4, Virtex5, and Virtex7 families. To the best of our knowledge, our single- and three-multiplier-based designs show the fastest performance to date when compared with reported works individually. Our one-multiplier-based ECC processor also achieves the highest reported speed together with the best reported area-time performance on Virtex4 (5.32 μs at 210 MHz), on Virtex5 (4.91 μs at 228 MHz), and on the more advanced Virtex7 (3.18 μs at 352 MHz). Finally, the proposed three-multiplier-based ECC implementation is the first work reporting the lowest number of CCs and the fastest ECC processor design on FPGA (450 CCs to get 2.83 μs on Virtex7)
    • …
    corecore