69 research outputs found

    Non-intrusive load monitoring solutions for low- and very low-rate granularity

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T15573Large-scale smart energy metering deployment worldwide and the integration of smart meters within the smart grid are enabling two-way communication between the consumer and energy network, thus ensuring an improved response to demand. Energy disaggregation or non-intrusive load monitoring (NILM), namely disaggregation of the total metered electricity consumption down to individual appliances using purely algorithmic tools, is gaining popularity as an added-value that makes the most of meter data.In this thesis, the first contribution tackles low-rate NILM problem by proposing an approach based on graph signal processing (GSP) that does not require any training.Note that Low-rate NILM refers to NILM of active power measurements only, at rates from 1 second to 1 minute. Adaptive thresholding, signal clustering and pattern matching are implemented via GSP concepts and applied to the NILM problem. Then for further demonstration of GSP potential, GSP concepts are applied at both, physical signal level via graph-based filtering and data level, via effective semi-supervised GSP-based feature matching. The proposed GSP-based NILM-improving methods are generic and can be used to improve the results of various event-based NILM approaches. NILM solutions for very low data rates (15-60 min) cannot leverage on low to highrates NILM approaches. Therefore, the third contribution of this thesis comprises three very low-rate load disaggregation solutions, based on supervised (i) K-nearest neighbours relying on features such as statistical measures of the energy signal, time usage profile of appliances and reactive power consumption (if available); unsupervised(ii) optimisation performing minimisation of error between aggregate and the sum of estimated individual loads, where energy consumed by always-on load is heuristically estimated prior to further disaggregation and appliance models are built only by manufacturer information; and (iii) GSP as a variant of aforementioned GSP-based solution proposed for low-rate load disaggregation, with an additional graph of time-of-day information.Large-scale smart energy metering deployment worldwide and the integration of smart meters within the smart grid are enabling two-way communication between the consumer and energy network, thus ensuring an improved response to demand. Energy disaggregation or non-intrusive load monitoring (NILM), namely disaggregation of the total metered electricity consumption down to individual appliances using purely algorithmic tools, is gaining popularity as an added-value that makes the most of meter data.In this thesis, the first contribution tackles low-rate NILM problem by proposing an approach based on graph signal processing (GSP) that does not require any training.Note that Low-rate NILM refers to NILM of active power measurements only, at rates from 1 second to 1 minute. Adaptive thresholding, signal clustering and pattern matching are implemented via GSP concepts and applied to the NILM problem. Then for further demonstration of GSP potential, GSP concepts are applied at both, physical signal level via graph-based filtering and data level, via effective semi-supervised GSP-based feature matching. The proposed GSP-based NILM-improving methods are generic and can be used to improve the results of various event-based NILM approaches. NILM solutions for very low data rates (15-60 min) cannot leverage on low to highrates NILM approaches. Therefore, the third contribution of this thesis comprises three very low-rate load disaggregation solutions, based on supervised (i) K-nearest neighbours relying on features such as statistical measures of the energy signal, time usage profile of appliances and reactive power consumption (if available); unsupervised(ii) optimisation performing minimisation of error between aggregate and the sum of estimated individual loads, where energy consumed by always-on load is heuristically estimated prior to further disaggregation and appliance models are built only by manufacturer information; and (iii) GSP as a variant of aforementioned GSP-based solution proposed for low-rate load disaggregation, with an additional graph of time-of-day information

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    non intrusive load monitoring using additive time series modeling via finite mixture models aggregation

    Get PDF
    Due to an exponential rise in energy consumption, it is imperative that buildings adopt sustainable energy consumption systems. A number of studies have shown that this can be achieved by providing real-time feedback on the energy consumption of each appliance to residents. It is possible to accomplish this through non-intrusive load monitoring (NILM) that disaggregates electricity consumption of individual appliances from the total energy consumption of a household. Research on NILM typically trains the inference model for a single house which cannot be generalized to other houses. In this Master thesis, a novel approach is proposed to tackle mentioned issue.This thesis proposes to use two finite mixture models namely generalized Gaussian mixture and Gamma mixture, to create a generalizable electrical signature model for each appliance type by training over labelled data and create various combinations of appliances together. By using this strategy, a model can be used on unseen houses, without extensive training on the new house. The issue of different measurement resolutions in the NILM area is also a considerable challenge. As a rule of thumb, state-of-the-art methods are studied using high-frequency data, which is rarely applicable in real-world situations due to smart meters' limited precision. To address this issue, the model is evaluated on three different datasets with different timestamps, AMPds, REDD and IRISE datasets. To increase the aggregation level and compare with RNN and FHMM as two well-known methods in NILM, an extension that we called DNN-Mixtures, is proposed. The results show that the proposed model can compete with state of art techniques. For evaluation, accuracy, precision, recall and F-score metrics are used

    Modelling of Electrical Appliance Signatures for Energy Disaggregation

    Get PDF
    The rapid development of technology in the electrical sector within the last 20 years has led to growing electric power needs through the increased number of electrical appliances and automation of tasks. In contrary, reduction of the overall energy consumption as well as efficient energy management are needed, in order to reduce global warming and meet the global climate protection goals. These requirements have led to the recent adoption of smart-meters and smart-grids, as well as to the rise of Non-Intrusive Load Monitoring. Non-Intrusive Load Monitoring aims to extract the energy consumption of individual electrical appliances through disaggregation of the total power consumption as measured by a single smart meter at the inlet of a household. Therefore, Non-Intrusive Load Monitoring is a highly under-determined problem which aims to estimate multiple variables from a single observation, thus is impossible to be solved analytical. In order to find accurate estimates of the unknown variables three fundamentally different approaches, namely deep-learning, pattern matching and single-channel source separation, have been investigated in the literature in order to solve the Non-Intrusive Load Monitoring problem. While Non-Intrusive Load Monitoring has multiple areas of application, including energy reduction through consumer awareness, load scheduling for energy cost optimization or reduction of peak demands, the focus of this thesis is especially on the performance of the disaggregation algorithm, the key part of the Non-Intrusive Load Monitoring architecture. In detail, optimizations are proposed for all three architectures, while the focus lies on deep-learning based approaches. Furthermore, the transferability capability of the deep-learning based approach is investigated and a NILM specific transfer architecture is proposed. The main contribution of the thesis is threefold. First, with Non-Intrusive Load Monitoring being a time-series problem incorporation of temporal information is crucial for accurate modelling of the appliance signatures and the change of signatures over time. Therefore, previously published architectures based on deep-learning have focused on utilizing regression models which intrinsically incorporating temporal information. In this work, the idea of incorporating temporal information is extended especially through modelling temporal patterns of appliances not only in the regression stage, but also in the input feature vector, i.e. by using fractional calculus, feature concatenation or high-frequency double Fourier integral signatures. Additionally, multi variance matching is utilized for Non-Intrusive Load Monitoring in order to have additional degrees of freedom for a pattern matching based solution. Second, with Non-Intrusive Load Monitoring systems expected to operate in realtime as well as being low-cost applications, computational complexity as well as storage limitations must be considered. Therefore, in this thesis an approximation for frequency domain features is presented in order to account for a reduction in computational complexity. Furthermore, investigations of reduced sampling frequencies and their impact on disaggregation performance has been evaluated. Additionally, different elastic matching techniques have been compared in order to account for reduction of training times and utilization of models without trainable parameters. Third, in order to fully utilize Non-Intrusive Load Monitoring techniques accurate transfer models, i.e. models which are trained on one data domain and tested on a different data domain, are needed. In this context it is crucial to transfer time-variant and manufacturer dependent appliance signatures to manufacturer invariant signatures, in order to assure accurate transfer modelling. Therefore, a transfer learning architecture specifically adapted to the needs of Non-Intrusive Load Monitoring is presented. Overall, this thesis contributes to the topic of Non-Intrusive Load Monitoring improving the performance of the disaggregation stage while comparing three fundamentally different approaches for the disaggregation problem

    Assessment of applications of optimisation to building design and energy modelling

    Get PDF
    Buildings account for around 35% of the world’s carbon emissions and strategies to reduce carbon emissions have made much use of building energy modelling. Optimisation techniques promise new ways of achieving the most cost effective and efficient solutions more quickly and with less input from engineers and building physicists. However, there is limited research into the practical applications of these techniques to building design practice. This thesis presents the results of case-based research into the practical application of design stage optimisation and calibration methods to energy efficient building fabric and services design using building energy modelling. The application during early stage design of a Non-dominating Sorting Genetic Algorithm 2 (NSGA2) to a building energy model EnergyPlusTM. The exercise was used to determine if the application of NSGA2 yielded a significant improvement in the selection of building services technology and building fabric elements. The use of NSGA2 enabled significant (£400,000) capital cost savings without degrading the comfort or energy performance. The potential capital cost savings significantly outweighed the cost of the engineering time required to carry out the additional analysis. Three optimisation techniques were applied to three case study buildings to select appropriate model parameters to minimise the difference between modelled and measured parameters and hence calibrate the model. An heuristic approach was applied to the Institute for Life Sciences Building 1 (ILS1) at Swansea University. Latin Hypercube Monte Carlo (LHMC) was applied to the Arup building at 8 Fitzroy St London and compared directly with the results from an approach using Self Adaptive Differential Evolution (SADE). Poor Building Management System data quality was found to significantly limit the potential to calibrate models. Where robust data was available it was however found to be possible to calibrate EnergyPlus simulations of complex real world buildings using LHMC and SADE methods at levels close to that required by professional bodies

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore