66 research outputs found

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201

    FPGA-Based Channel Coding Architectures for 5G Wireless Using High-Level Synthesis

    Get PDF
    We propose strategies to achieve a high-throughput FPGA architecture for quasi-cyclic low-density parity-check codes based on circulant-1 identity matrix construction. By splitting the node processing operation in the min-sum approximation algorithm, we achieve pipelining in the layered decoding schedule without utilizing additional hardware resources. High-level synthesis compilation is used to design and develop the architecture on the FPGA hardware platform. To validate this architecture, an IEEE 802.11n compliant 608 Mb/s decoder is implemented on the Xilinx Kintex-7 FPGA using the LabVIEW FPGA Compiler in the LabVIEW Communication System Design Suite. Architecture scalability was leveraged to accomplish a 2.48 Gb/s decoder on a single Xilinx Kintex-7 FPGA. Further, we present rapidly prototyped experimentation of an IEEE 802.16 compliant hybrid automatic repeat request system based on the efficient decoder architecture developed. In spite of the mixed nature of data processing—digital signal processing and finite-state machines—LabVIEW FPGA Compiler significantly reduced time to explore the system parameter space and to optimize in terms of error performance and resource utilization. A 4x improvement in the system throughput, relative to a CPU-based implementation, was achieved to measure the error-rate performance of the system over large, realistic data sets using accelerated, in-hardware simulation

    Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning

    Full text link
    The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.Comment: 71 pages, 42 Figures, 1 Table, 1 Appendix. arXiv admin note: text overlap with arXiv:2109.08184 by other author

    VLSI decoding architectures: flexibility, robustness and performance

    Get PDF
    Stemming from previous studies on flexible LDPC decoders, this thesis work has been mainly focused on the development of flexible turbo and LDPC decoder designs, and on the narrowing of the power, area and speed gap they might present with respect to dedicated solutions. Additional studies have been carried out within the field of increased code performance and of decoder resiliency to hardware errors. The first chapter regroups several main contributions in the design and implementation of flexible channel decoders. The first part concerns the design of a Network-on-Chip (NoC) serving as an interconnection network for a partially parallel LDPC decoder. A best-fit NoC architecture is designed and a complete multi-standard turbo/LDPC decoder is designed and implemented. Every time the code is changed, the decoder must be reconfigured. A number of variables influence the duration of the reconfiguration process, starting from the involved codes down to decoder design choices. These are taken in account in the flexible decoder designed, and novel traffic reduction and optimization methods are then implemented. In the second chapter a study on the early stopping of iterations for LDPC decoders is presented. The energy expenditure of any LDPC decoder is directly linked to the iterative nature of the decoding algorithm. We propose an innovative multi-standard early stopping criterion for LDPC decoders that observes the evolution of simple metrics and relies on on-the-fly threshold computation. Its effectiveness is evaluated against existing techniques both in terms of saved iterations and, after implementation, in terms of actual energy saving. The third chapter portrays a study on the resilience of LDPC decoders under the effect of memory errors. Given that the purpose of channel decoders is to correct errors, LDPC decoders are intrinsically characterized by a certain degree of resistance to hardware faults. This characteristic, together with the soft nature of the stored values, results in LDPC decoders being affected differently according to the meaning of the wrong bits: ad-hoc error protection techniques, like the Unequal Error Protection devised in this chapter, can consequently be applied to different bits according to their significance. In the fourth chapter the serial concatenation of LDPC and turbo codes is presented. The concatenated FEC targets very high error correction capabilities, joining the performance of turbo codes at low SNR with that of LDPC codes at high SNR, and outperforming both current deep-space FEC schemes and concatenation-based FECs. A unified decoder for the concatenated scheme is subsequently propose

    Unified turbo/LDPC code decoder architecture for deep-space communications

    Get PDF
    Deep-space communications are characterized by extremely critical conditions; current standards foresee the usage of both turbo and low-density-parity-check (LDPC) codes to ensure recovery from received errors, but each of them displays consistent drawbacks. Code concatenation is widely used in all kinds of communication to boost the error correction capabilities of single codes; serial concatenation of turbo and LDPC codes has been recently proven effective enough for deep space communications, being able to overcome the shortcomings of both code types. This work extends the performance analysis of this scheme and proposes a novel hardware decoder architecture for concatenated turbo and LDPC codes based on the same decoding algorithm. This choice leads to a high degree of datapath and memory sharing; postlayout implementation results obtained with complementary metal-oxide semiconductor (CMOS) 90 nm technology show small area occupation (0.98 mm 2 ) and very low power consumption (2.1 mW)

    A survey of FPGA-based LDPC decoders

    No full text
    Low-Density Parity Check (LDPC) error correction decoders have become popular in communications systems, as a benefit of their strong error correction performance and their suitability to parallel hardware implementation. A great deal of research effort has been invested into LDPC decoder designs that exploit the flexibility, the high processing speed and the parallelism of Field-Programmable Gate Array (FPGA) devices. FPGAs are ideal for design prototyping and for the manufacturing of small-production-run devices, where their in-system programmability makes them far more cost-effective than Application-Specific Integrated Circuits (ASICs). However, the FPGA-based LDPC decoder designs published in the open literature vary greatly in terms of design choices and performance criteria, making them a challenge to compare. This paper explores the key factors involved in FPGA-based LDPC decoder design and presents an extensive review of the current literature. In-depth comparisons are drawn amongst 140 published designs (both academic and industrial) and the associated performance trade-offs are characterised, discussed and illustrated. Seven key performance characteristics are described, namely their processing throughput, latency, hardware resource requirements, error correction capability, processing energy efficiency, bandwidth efficiency and flexibility. We offer recommendations that will facilitate fairer comparisons of future designs, as well as opportunities for improving the design of FPGA-based LDPC decoder

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    • …
    corecore