499 research outputs found

    SAR imaging of moving targets by subaperture based low-rank and sparse decomposition

    Get PDF
    We propose a subaperture based method for synthetic aperture radar (SAR) imaging of moving targets. It exploits low-rank and sparse decomposition for extraction of moving targets from the complex SAR scene. First SAR raw data are divided into subapertures in the azimuth direction. Subsequently, low-rank and sparse decomposition is applied using the multiple subapertures data to accomplish the separation of moving targets from the stationary SAR background. A full resolution moving target image is reconstructed by combining the spectral information of the sparse subaperture images. Such an image has a high signal to clutter ratio and is well suited for motion estimation and focusing algorithms. This proposed framework extends the applicability of sparsity-driven moving target focusing methods to very low signal to clutter ratio environments. We demonstrate the performance of our approach through experiments with synthetic and real SAR data

    Dictionary learning and low-rank sparse matrix decomposition for sparsity driven SAR image reconstruction

    Get PDF
    Synthetic aperture radar (SAR) is one of the most widely used remote sensing modalities, providing images for a variety of applications including those in defense, environmental science, and weather forecasting. However, conventionally formed SAR imagery from undersampled observed data, arising in several emerging applications and sensing scenarios, suffers from artifacts that might limit effective use of such imagery in remote sensing applications. Recently, sparsity-driven SAR imaging has emerged as an e ective framework to alleviate such problems. Sparsity-based methods for SAR imaging have employed overcomplete dictionaries to represent the magnitude of the complex-valued eld sparsely. Selection of an appropriate dictionary with respect to the features of the particular type of underlying scene plays an important role in these methods. In this thesis, we develop two new sparsity-driven SAR imaging methods that significantly expand the domain of applicability of sparsity-based methods in SAR imaging. Our first contribution involves the development of a new reconstruction method that is based on learning sparsifying dictionaries and using such learned dictionaries in the reconstruction process. Adaptive dictionaries learned from data can represent the magnitude of complex-valued field more effectively and hence have the potential to widen the applicability of sparsity-based radar imaging. Our framework allows the use of both adaptive dictionaries learned offline from a training set and those learned online from the undersampled data used in image formation. We demonstrate the effectiveness of the proposed dictionary learning-based SAR imaging approach as well as the improvements it provides, on both synthetic and real data. The second contribution of this thesis involves the development of a reconstruction method that decomposes the imaged field into a sparse and a low-rank component. Such a decomposition is of interest in image analysis tasks such as segmentation and background subtraction. Conventionally, such operations are performed after SAR image formation. We exploit recent work on sparse and low-rank decomposition of matrices and incorporate such a decomposition into the process of SAR image formation. The outcome is a method that jointly reconstructs a SAR image and decomposes the formed image into its low-rank background and spatially sparse components. We demonstrate the effectiveness of the proposed method on both synthetic and real SAR images

    A Rank-Deficient and Sparse Penalized Optimization Model for Compressive Indoor Radar Target Localization

    Get PDF
    This paper proposes a rank-deficient and sparse penalized optimization method for addressing the problem of through-wall radar imaging (TWRI) in the presence of structured wall clutter. Compressive TWRI enables fast data collection and accurate target localization, but faces with the challenges of incomplete data measurements and strong wall clutter. This paper handles these challenges by formulating the task of wall-clutter removal and target image reconstruction as a joint low-rank and sparse regularized minimization problem. In this problem,  the low-rank regularization is used to capture the low-dimensional structure of the wall signals and the sparse penalty is employed to represent the image of the indoor targets. We introduce an iterative algorithm based on the forward-backward proximal gradient technique to solve the large-scale optimization problem, which simultaneously removes unwanted wall clutter and reconstruct an image of indoor targets. Simulated and real radar data are used to validate the effectiveness of the proposed rank-deficient and sparse regularized optimization approach

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique
    corecore