1,001 research outputs found

    Embedding a Grid of Load Cells into a Dining Table for Automatic Monitoring and Detection of Eating Events

    Get PDF
    This dissertation describes a “smart dining table” that can detect and measure consumption events. This work is motivated by the growing problem of obesity, which is a global problem and an epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary assessment tools and discuss their drawback and the necessity of using more objective, accurate, low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies used for automatic dietary assessment such as acoustic-, motion-, or image-based systems. This is followed by a literature review of prior works related to the detection of weights and locations of objects sitting on a table surface. Finally, we state the novelty of this work. In chapter 2, we describe the construction of a table that uses an embedded grid of load cells to sense the weights and positions of objects. The main challenge is aligning the tops of adjacent load cells to within a few micrometer tolerance, which we accomplish using a novel inversion process during construction. Experimental tests found that object weights distributed across 4 to 16 load cells could be measured with 99.97±0.1% accuracy. Testing the surface for flatness at 58 points showed that we achieved approximately 4.2±0.5 um deviation among adjacent 2x2 grid of tiles. Through empirical measurements we determined that the table has a 40.2 signal-to-noise ratio when detecting the smallest expected intake amount (0.5 g) from a normal meal (approximate total weight is 560 g), indicating that a tiny amount of intake can be detected well above the noise level of the sensors. In chapter 3, we describe a pilot experiment that tests the capability of the table to monitor eating. Eleven human subjects were video recorded for ground truth while eating a meal on the table using a plate, bowl, and cup. To detect consumption events, we describe an algorithm that analyzes the grid of weight measurements in the format of an image. The algorithm segments the image into multiple objects, tracks them over time, and uses a set of rules to detect and measure individual bites of food and drinks of liquid. On average, each meal consisted of 62 consumption events. Event detection accuracy was very high, with an F1-score per subject of 0.91 to 1.0, and an F1 score per container of 0.97 for the plate and bowl, and 0.99 for the cup. The experiment demonstrates that our device is capable of detecting and measuring individual consumption events during a meal. Chapter 4 compares the capability of our new tool to monitor eating against previous works that have also monitored table surfaces. We completed a literature search and identified the three state-of-the-art methods to be used for comparison. The main limitation of all previous methods is that they used only one load cell for monitoring, so only the total surface weight can be analyzed. To simulate their operations, the weights of our grid of load cells were summed up to use the 2D data as 1D. Data were prepared according to the requirements of each method. Four metrics were used to evaluate the comparison: precision, recall, accuracy, and F1-score. Our method scored the highest in recall, accuracy, and F1-score; compared to all other methods, our method scored 13-21% higher for recall, 8-28% higher for accuracy, and 10-18% higher for F1-score. For precision, our method scored 97% that is just 1% lower than the highest precision, which was 98%. In summary, this dissertation describes novel hardware, a pilot experiment, and a comparison against current state-of-the-art tools. We also believe our methods could be used to build a similar surface for other applications besides monitoring consumption

    Novel SMART Textiles

    Get PDF

    Physical and chemical sensing applications of polypyrrole-coated foams

    Get PDF
    We live in a world of information, and emerging technologies, which compel us to look for new ways to collect, process, and distribute information. Today we are faced with an information overload problem as users struggle to locate the right information in the right way at the right time. In my view this is an “overload” of trivial information coupled with a gap in access to important information. Digitization of information and communications has seen the rise and rise of computers to a now ubiquitous position in our society. However, the problem remains as to how to merge the digital world with sensing, and respond to changes in the real world. Ubiquitous information systems are needed that will automatically sense and importantly, respond to changes in their environment and usage in order to deliver a more intelligent, proactive and personalized information service. These systems may be wearable, enabling them to disappear into our personal space, enhancing rather than burdening our daily activities. Conventional sensors are generally unsuitable for wearable body monitoring devices either due to their physical structure or their functional requirements. This thesis examines this area of wearable sensors, detailing the development and characterisation of novel sensing materials and outlines their performance in various on-body monitoring applications

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    Get PDF
    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites

    Fiber Optic Sensors Embedded in Textile-Reinforced Concrete for Smart Structural Health Monitoring: A Review

    Get PDF
    The last decade has seen rapid developments in the areas of carbon fiber technology, additive manufacturing technology, sensor engineering, i.e., wearables, and new structural reinforcement techniques. These developments, although from different areas, have collectively paved way for concrete structures with non-corrosive reinforcement and in-built sensors. Therefore, the purpose of this effort is to bridge the gap between civil engineering and sensor engineering communities through an overview on the up-to-date technological advances in both sectors, with a special focus on textile reinforced concrete embedded with fiber optic sensors. The introduction section highlights the importance of reducing the carbon footprint resulting from the building industry and how this could be effectively achieved by the use of state-of-the-art reinforcement techniques. Added to these benefits would be the implementations on infrastructure monitoring for the safe operation of structures through their entire lifespan by utilizing sensors, specifically, fiber optic sensors. The paper presents an extensive description on fiber optic sensor engineering that enables the incorporation of sensors into the reinforcement mechanism of a structure at its manufacturing stage, enabling effective monitoring and a wider range of capabilities when compared to conventional means of structural health monitoring. In future, these developments, when combined with artificial intelligence concepts, will lead to distributed sensor networks for smart monitoring applications, particularly enabling such distributed networks to be implemented/embedded at their manufacturing stage
    corecore