1,116 research outputs found

    A compact aVLSI conductance-based silicon neuron

    Full text link
    We present an analogue Very Large Scale Integration (aVLSI) implementation that uses first-order lowpass filters to implement a conductance-based silicon neuron for high-speed neuromorphic systems. The aVLSI neuron consists of a soma (cell body) and a single synapse, which is capable of linearly summing both the excitatory and inhibitory postsynaptic potentials (EPSP and IPSP) generated by the spikes arriving from different sources. Rather than biasing the silicon neuron with different parameters for different spiking patterns, as is typically done, we provide digital control signals, generated by an FPGA, to the silicon neuron to obtain different spiking behaviours. The proposed neuron is only ~26.5 um2 in the IBM 130nm process and thus can be integrated at very high density. Circuit simulations show that this neuron can emulate different spiking behaviours observed in biological neurons.Comment: BioCAS-201

    An investigation into adaptive power reduction techniques for neural hardware

    No full text
    In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reduction

    FPGA-Based Acceleration of the Self-Organizing Map (SOM) Algorithm using High-Level Synthesis

    Get PDF
    One of the fastest growing and the most demanding areas of computer science is Machine Learning (ML). Self-Organizing Map (SOM), categorized as unsupervised ML, is a popular data-mining algorithm widely used in Artificial Neural Network (ANN) for mapping high dimensional data into low dimensional feature maps. SOM, being computationally intensive, requires high computational time and power when dealing with large datasets. Acceleration of many computationally intensive algorithms can be achieved using Field-Programmable Gate Arrays (FPGAs) but it requires extensive hardware knowledge and longer development time when employing traditional Hardware Description Language (HDL) based design methodology. Open Computing Language (OpenCL) is a standard framework for writing parallel computing programs that execute on heterogeneous computing systems. Intel FPGA Software Development Kit for OpenCL (IFSO) is a High-Level Synthesis (HLS) tool that provides a more efficient alternative to HDL-based design. This research presents an optimized OpenCL implementation of SOM algorithm on Stratix V and Arria 10 FPGAs using IFSO. Compared to recent SOM implementations on Central Processing Unit (CPU) and Graphics Processing Unit (GPU), our OpenCL implementation on FPGAs provides superior speed performance and power consumption results. Stratix V achieves speedup of 1.41x - 16.55x compared to AMD and Intel CPU and 2.18x compared to Nvidia GPU whereas Arria 10 achieves speedup of 1.63x - 19.15x compared to AMD and Intel CPU and 2.52x compared to Nvidia GPU. In terms of power consumption, Stratix V is 35.53x and 42.53x whereas Arria 10 is 15.82x and 15.93x more power efficient compared to CPU and GPU respectively

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio

    Development of self-organizing methods for radio spectrum sensing

    Get PDF
    A problem of wide-band radio spectrum analysis in real time was solved and presented in the dissertation. The goal of the work was to develop a spectrum sensing method for primary user emission detection in radio spectrum by investigating new signal feature extraction and intelligent decision making techniques. A solution of this problem is important for application in cognitive radio systems, where radio spectrum is analyzed in real time. In thesis there are reviewed currently suggested spectrum analysis methods, which are used for cognitive radio. The main purpose of these methods is to optimize spectrum description feature estimation in real-time systems and to select suitable classification threshold. For signal spectrum description analyzed methods used signal energy estimation, analyzed energy statistical difference in time and frequency. In addition, the review has shown that the wavelet transform can be used for signal pre-processing in spectrum sensors. For classification threshold selection in literature most common methods are based on statistical noise estimate and energy statistical change analysis. However, there are no suggested efficient methods, which let classification threshold to change adaptively, when RF environment changes. It were suggested signal features estimation modifications, which let to increase the efficiency of algorithm implementation in embedded system, by decreasing the amount of required calculations and preserving the accuracy of spectrum analysis algorithms. For primary signal processing it is suggested to use wavelet transform based features extraction, which are used for spectrum sensors and lets to increase accuracy of noisy signal detection. All primary user signal emissions were detected with lower than 1% false alarm ratio. In dissertation, there are suggested artificial neural network based methods, which let adaptively select classification threshold for the spectrum sensors. During experimental tests, there was achieved full signals emissions detection with false alarm ratio lower than 1%. It was suggested self organizing map structure modification, which increases network self-training speed up to 32 times. This self-training speed is achieved due to additional inner weights, which are added in to self organizing map structure. In self-training stage network structure changes especially fast and when topology, which is suited for given task, is reached, in further self-training iterations it can be disordered. In order to avoid this over-training, self-training process monitoring algorithms must be used. There were suggested original methods for self-training process control, which let to avoid network over-training and decrease self-training iteration quantity

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    An Intelligent System-on-a-Chip for a Real-Time Assessment of Fuel Consumption to Promote Eco-Driving

    Get PDF
    Pollution that originates from automobiles is a concern in the current world, not only because of global warming, but also due to the harmful effects on people’s health and lives. Despite regulations on exhaust gas emissions being applied, minimizing unsuitable driving habits that cause elevated fuel consumption and emissions would achieve further reductions. For that reason, this work proposes a self-organized map (SOM)-based intelligent system in order to provide drivers with eco-driving-intended driving style (DS) recommendations. The development of the DS advisor uses driving data from the Uyanik instrumented car. The system classifies drivers regarding the underlying causes of non-optimal DSs from the eco-driving viewpoint. When compared with other solutions, the main advantage of this approach is the personalization of the recommendations that are provided to motorists, comprising the handling of the pedals and the gearbox, with potential improvements in both fuel consumption and emissions ranging from the 9.5% to the 31.5%, or even higher for drivers that are strongly engaged with the system. It was successfully implemented using a field-programmable gate array (FPGA) device of the Xilinx ZynQ programmable system-on-a-chip (PSoC) family. This SOM-based system allows for real-time implementation, state-of-the-art timing performances, and low power consumption, which are suitable for developing advanced driving assistance systems (ADASs).This work was supported in part by the Spanish AEI and European FEDER funds under Grant TEC2016-77618-R (AEI/FEDER, UE) and by the University of the Basque Country under Grant GIU18/122

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem Schlüsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, übertreffen Gehirne von Säugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfähigsten Maschinen. Industrieroboter sind sehr schnell und präzise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie für die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfähig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits überlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen Repräsentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras übertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch für eine vergleichende Studie zu sample-basierten Planern verwendet. Ergänzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewählt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung für dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage für neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg für die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK
    corecore