32,521 research outputs found

    Evaluation of temperature-performance trade-offs in wireless network-on-chip architectures

    Get PDF
    Continued scaling of device geometries according to Moore\u27s Law is enabling complete end-user systems on a single chip. Massive multicore processors are enablers for many information and communication technology (ICT) innovations spanning various domains, including healthcare, defense, and entertainment. In the design of high-performance massive multicore chips, power and heat are dominant constraints. Temperature hotspots witnessed in multicore systems exacerbate the problem of reliability in deep submicron technologies. Hence, there is a great need to explore holistic power and thermal optimization and management strategies for the massive multicore chips. High power consumption not only raises chip temperature and cooling cost, but also decreases chip reliability and performance. Thus, addressing thermal concerns at different stages of the design and operation is critical to the success of future generation systems. The performance of a multicore chip is also influenced by its overall communication infrastructure, which is predominantly a Network-on-Chip (NoC). The existing method of implementing a NoC with planar metal interconnects is deficient due to high latency, significant power consumption, and temperature hotspots arising out of long, multi-hop wireline links used in data exchange. On-chip wireless networks are envisioned as an enabling technology to design low power and high bandwidth massive multicore architectures. However, optimizing wireless NoCs for best performance does not necessarily guarantee a thermally optimal interconnection architecture. The wireless links being highly efficient attract very high traffic densities which in turn results in temperature hotspots. Therefore, while the wireless links result in better performance and energy-efficiency, they can also cause temperature hotspots and undermine the reliability of the system. Consequently, the location and utilization of the wireless links is an important factor in thermal optimization of high performance wireless Networks-on-Chip. Architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance yet energy-efficient massive multicore chips. This work contributes to exploration of various the design methodologies for establishing wireless NoC architectures that achieve the best trade-offs between temperature, performance and energy-efficiency. It further demonstrates that incorporating Dynamic Thermal Management (DTM) on a multicore chip designed with such temperature and performance optimized Wireless Network-on-Chip architectures improves thermal profile while simultaneously providing lower latency and reduced network energy dissipation compared to its conventional counterparts

    Towards Structural Testing of Superconductor Electronics

    Get PDF
    Many of the semiconductor technologies are already\ud facing limitations while new-generation data and\ud telecommunication systems are implemented. Although in\ud its infancy, superconductor electronics (SCE) is capable of\ud handling some of these high-end tasks. We have started a\ud defect-oriented test methodology for SCE, so that reliable\ud systems can be implemented in this technology. In this\ud paper, the details of the study on the Rapid Single-Flux\ud Quantum (RSFQ) process are presented. We present\ud common defects in the SCE processes and corresponding\ud test methodologies to detect them. The (measurement)\ud results prove that we are able to detect possible random\ud defects for statistical purposes in yield analysis. This\ud paper also presents possible test methodologies for RSFQ\ud circuits based on defect oriented testing (DOT)

    VLSI Architecture and Design

    Get PDF
    Integrated circuit technology is rapidly approaching a state where feature sizes of one micron or less are tractable. Chip sizes are increasing slowly. These two developments result in considerably increased complexity in chip design. The physical characteristics of integrated circuit technology are also changing. The cost of communication will be dominating making new architectures and algorithms both feasible and desirable. A large number of processors on a single chip will be possible. The cost of communication will make designs enforcing locality superior to other types of designs. Scaling down feature sizes results in increase of the delay that wires introduce. The delay even of metal wires will become significant. Time tends to be a local property which will make the design of globally synchronous systems more difficult. Self-timed systems will eventually become a necessity. With the chip complexity measured in terms of logic devices increasing by more than an order of magnitude over the next few years the importance of efficient design methodologies and tools become crucial. Hierarchical and structured design are ways of dealing with the complexity of chip design. Structered design focuses on the information flow and enforces a high degree of regularity. Both hierarchical and structured design encourage the use of cell libraries. The geometry of the cells in such libraries should be parameterized so that for instance cells can adjust there size to neighboring cells and make the proper interconnection. Cells with this quality can be used as a basis for "Silicon Compilers"

    CMOS design of adaptive fuzzy ASICs using mixed-signal circuits

    Get PDF
    Analog circuits are natural candidates to design fuzzy chips with optimum speed/power figures for precision up to about 1%. This paper presents a methodology and circuit blocks to realize fuzzy controllers in the form of analog CMOS chips. These chips can be made to adapt their function through electrical control. The proposed design methodology emphasizes modularity and simplicity at the circuit level - prerequisites to increasing processor complexity and operation speed. The paper include measurements from a silicon prototype of a fuzzy controller chip in CMOS 1.5 /spl mu/m single-poly technology

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Modular Design of Adaptive Analog CMOS Fuzzy Controller Chips

    Get PDF
    Analog circuits are natural candidates to design fuzzy chips with optimum speed/power figures for precision up to about 1%. This paper presents a methodology and circuit blocks to realize fuzzy controllers in the form of analog CMOS chips. These chips can be made to adapt their function through electrical control. The proposed design methodology emphasizes modularity and simplicity at the circuit level -- prerequisites to increasing processor complexity and operation speed. The paper include measurements from a silicon prototype of a fuzzy controller chip in CMOS 1.5ÎŒm single-poly technology
    • 

    corecore