3,587 research outputs found

    A Low-Power Interface for Capacitive Sensors With PWM Output and Intrinsic Low Pass Characteristic

    Get PDF
    A compact, low power interface for capacitive sensors, is described. The output signal is a pulse width modulated (PWM) signal, where the pulse duration is linearly proportional to the sensor differential capacitance. The original conversion approach consists in stimulating the sensor capacitor with a triangular-like voltage waveform in order to obtain a square-like current waveform, which is subsequently demodulated and integrated over a clock period. The charge obtained in this way is then converted into the output pulse duration by an approach that includes an intrinsic tunable low pass function. The main non idealities are thoroughly investigated in order to provide useful design indications and evaluate the actual potentialities of the proposed circuit. The theoretical predictions are compared with experimental results obtained with a prototype, designed and fabricated using 0.32 mu M CMOS devices from the BCD6s process of STMicroelectroncs. The prototype occupies a total area of 1025 x 515 mm(2) and is marked by a power consuption of 84 mu W. The input capacitance range is 0-256 fF, with a resolution of 0.8 fF and a temperature sensitivity of 300 ppm/degrees C

    SPRZĘT I OPROGRAMOWANIE DO BADAƃ ELEMENTÓW ELEKTRONICZNYCH I CZUJNIKÓW

    Get PDF
    The main results of RETwix development are presented in the paper. RETwix is an universal hardware and software means for laboratory research, which can be used for investigation both electronic components and arbitrary electrical, thermal, chemical or biochemical processes. Sensors, actuators and signal transducers of the Analog Front-End are used for this purpose. The RETwix means includes two CV-LAB devices (Capacitance & Voltage LABoratory) and UA-LAB (Universal Analog LABoratory). The peculiarities of construction and examples of RETwix using are described.GƂówne wyniki opracowania RETwix zostaƂy przedstawione w artykule. RETwix jest uniwersalnym sprzętem i oprogramowaniem do badaƄ laboratoryjnych, ktĂłre moĆŒna wykorzystać do badania zarĂłwno komponentĂłw elektronicznych, jak i dowolnych procesĂłw elektrycznych, termicznych, chemicznych lub biochemicznych. W tym celu zostaƂy wykorzystane czujniki, aktuatory i przetworniki sygnaƂu Analog Front-End. RETwix zawiera dwa urządzenia CV-LAB (Capacitance & Voltage LABoratory) oraz UA-LAB (Universal Analog LABoratory). ZostaƂy opisane osobliwoƛci budowy oraz przykƂady zastosowania RETwix

    A Closed-loop capacitance to pulse-width converter for single element capacitive sensors

    Get PDF
    A novel closed-loop capacitance-to-pulse width converter (CPC) suitable for single element capacitive sensors that use sinusoidal excitation is presented in this paper. Its operation is realized using a new configuration based on a simple, yet effective, auto-balancing scheme. The hardware prototype of the proposed CPC is relatively less complex to implement than those presented so far in the literature. It provides a quasi-digital output at a high update rate. Additionally, the output is insensitive to parasitic capacitances of the sensor. The output possesses high linearity, with respect to change in the sensor capacitance, ranging +/-5 pF, with a nominal capacitance as high as 200 pF. It exhibits a maximum non-linearity error of 0.061%FS. The output of the prototype has a resolution of 13.31 bits. Also, its response time for a step-change in the sensor capacitance is about 13 ms. This sophisticated and inexpensive closed-loop CPC is a perfect fit as an interfacing circuit for single element capacitive sensors.Peer ReviewedPostprint (author's final draft

    Biosensors and CMOS Interface Circuits

    Get PDF
    abstract: Analysing and measuring of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. Point of care diagnostic system, composing of biosensors, have promising applications for providing cheap, accurate and portable diagnosis. Owing to these expanding medical applications and advances made by semiconductor industry biosensors have seen a tremendous growth in the past few decades. Also emergence of microfluidics and non-invasive biosensing applications are other marker propellers. Analyzing biological signals using transducers is difficult due to the challenges in interfacing an electronic system to the biological environment. Detection limit, detection time, dynamic range, specificity to the analyte, sensitivity and reliability of these devices are some of the challenges in developing and integrating these devices. Significant amount of research in the field of biosensors has been focused on improving the design, fabrication process and their integration with microfluidics to address these challenges. This work presents new techniques, design and systems to improve the interface between the electronic system and the biological environment. This dissertation uses CMOS circuit design to improve the reliability of these devices. Also this work addresses the challenges in designing the electronic system used for processing the output of the transducer, which converts biological signal into electronic signal.Dissertation/ThesisM.S. Electrical Engineering 201

    Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    Full text link
    In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz^-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the photonic detection of electromagnetic waves. Finally, we propose some future work, including a Teraherz wave sensor based on antenna-coupled electro-optic polymer filled plasmonic slot waveguide, as well as a fully packaged and tailgated device.Comment: 20 pages, 16 figure

    Integrated Electronics for Wireless Imaging Microsystems with CMUT Arrays

    Get PDF
    Integration of transducer arrays with interface electronics in the form of single-chip CMUT-on-CMOS has emerged into the field of medical ultrasound imaging and is transforming this field. It has already been used in several commercial products such as handheld full-body imagers and it is being implemented by commercial and academic groups for Intravascular Ultrasound and Intracardiac Echocardiography. However, large attenuation of ultrasonic waves transmitted through the skull has prevented ultrasound imaging of the brain. This research is a prime step toward implantable wireless microsystems that use ultrasound to image the brain by bypassing the skull. These microsystems offer autonomous scanning (beam steering and focusing) of the brain and transferring data out of the brain for further processing and image reconstruction. The objective of the presented research is to develop building blocks of an integrated electronics architecture for CMUT based wireless ultrasound imaging systems while providing a fundamental study on interfacing CMUT arrays with their associated integrated electronics in terms of electrical power transfer and acoustic reflection which would potentially lead to more efficient and high-performance systems. A fully wireless architecture for ultrasound imaging is demonstrated for the first time. An on-chip programmable transmit (TX) beamformer enables phased array focusing and steering of ultrasound waves in the transmit mode while its on-chip bandpass noise shaping digitizer followed by an ultra-wideband (UWB) uplink transmitter minimizes the effect of path loss on the transmitted image data out of the brain. A single-chip application-specific integrated circuit (ASIC) is de- signed to realize the wireless architecture and interface with array elements, each of which includes a transceiver (TRX) front-end with a high-voltage (HV) pulser, a high-voltage T/R switch, and a low-noise amplifier (LNA). Novel design techniques are implemented in the system to enhance the performance of its building blocks. Apart from imaging capability, the implantable wireless microsystems can include a pressure sensing readout to measure intracranial pressure. To do so, a power-efficient readout for pressure sensing is presented. It uses pseudo-pseudo differential readout topology to cut down the static power consumption of the sensor for further power savings in wireless microsystems. In addition, the effect of matching and electrical termination on CMUT array elements is explored leading to new interface structures to improve bandwidth and sensitivity of CMUT arrays in different operation regions. Comprehensive analysis, modeling, and simulation methodologies are presented for further investigation.Ph.D

    Switched Capacitor Voltage Converter

    Get PDF
    This project supports IoT development by reducing the power con- sumption and physical footprint of voltage converters. Our switched- capacitor IC design steps down an input of 1:0 - 1:4 V to 0:6 V for a decade of load current from 5 - 50A

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    DESIGN OF SMART SENSORS FOR DETECTION OF PHYSICAL QUANTITIES

    Get PDF
    Microsystems and integrated smart sensors represent a flourishing business thanks to the manifold benefits of these devices with respect to their respective macroscopic counterparts. Miniaturization to micrometric scale is a turning point to obtain high sensitive and reliable devices with enhanced spatial and temporal resolution. Power consumption compatible with battery operated systems, and reduced cost per device are also pivotal for their success. All these characteristics make investigation on this filed very active nowadays. This thesis work is focused on two main themes: (i) design and development of a single chip smart flow-meter; (ii) design and development of readout interfaces for capacitive micro-electro-mechanical-systems (MEMS) based on capacitance to pulse width modulation conversion. High sensitivity integrated smart sensors for detecting very small flow rates of both gases and liquids aiming to fulfil emerging demands for this kind of devices in the industrial to environmental and medical applications. On the other hand, the prototyping of such sensor is a multidisciplinary activity involving the study of thermal and fluid dynamic phenomenon that have to be considered to obtain a correct design. Design, assisted by finite elements CAD tools, and fabrication of the sensing structures using features of a standard CMOS process is discussed in the first chapter. The packaging of fluidic sensors issue is also illustrated as it has a great importance on the overall sensor performances. The package is charged to allow optimal interaction between fluids and the sensors and protecting the latter from the external environment. As miniaturized structures allows a great spatial resolution, it is extremely challenging to fabricate low cost packages for multiple flow rate measurements on the same chip. As a final point, a compact anemometer prototype, usable for wireless sensor network nodes, is described. The design of the full custom circuitry for signal extraction and conditioning is coped in the second chapter, where insights into the design methods are given for analog basic building blocks such as amplifiers, transconductors, filters, multipliers, current drivers. A big effort has been put to find reusable design guidelines and trade-offs applicable to different design cases. This kind of rational design enabled the implementation of complex and flexible functionalities making the interface circuits able to interact both with on chip sensors and external sensors. In the third chapter, the chip floor-plan designed in the STMicroelectronics BCD6s process of the entire smart flow sensor formed by the sensing structures and the readout electronics is presented. Some preliminary tests are also covered here. Finally design and implementation of very low power interfaces for typical MEMS capacitive sensors (accelerometers, gyroscopes, pressure sensors, angular displacement and chemical species sensors) is discussed. Very original circuital topologies, based on chopper modulation technique, will be illustrated. A prototype, designed within a joint research activity is presented. Measured performances spurred the investigation of new techniques to enhance precision and accuracy capabilities of the interface. A brief introduction to the design of active pixel sensors interface for hybrid CMOS imagers is sketched in the appendix as a preliminary study done during an internship in the CNM-IMB institute of Barcelona

    An all-digital charge to digital converter

    Get PDF
    PhD ThesisDuring the last two decades, the topic of the Internet of Things (IoT) has become very popular. It provides an idea that everything in the real world should be connected with the internet in the future. Integrating sensors into small wireless networked nodes is a huge challenge due to the low power/energy budget in wireless sensor systems. An integrated sensor normally consumes significant power and has complex design which increases the cost. The core part of the sensor is the sensor interface which consumes major power especially for a capacitor-based sensor. Capacitive sensors and voltage sensors are two frequently used sensor types in the wireless sensor family. Capacitive sensors, that transform capacitance values into digital outputs, can be used in areas such as biomedical, environmental, and mobile applications. Voltage sensors are also widely used in many modern areas such as Energy Harvesting (EH) systems. Both of these sensors may make use of sensor interfaces to transform a measured analogue signal into a frequency output or a digital code for use in a digital system. Existing sensor interfaces normally use complex analog-to-digital converter (ADC) techniques that consume high power and suffers from slow sensing response. This thesis proposes a smart all-digital dual-use capacitorbased sensor interface called charge to digital converter (QDC). This QDC is capable of not only sensing capacitance but also sensing voltages by using fully digital solutions based on iterative delay chain discharge. Unlike the conventional methods vii that only treats the sensed capacitance only as the input signal, this thesis proposes a method that can directly use the stored energy from the sensed capacitance as well to power parts of the circuit, which simplifies the design and saves power. By playing with the capacitance and input voltage, it can be used as a capacitance-to-digital converter (CDC) to sense capacitance under fixed input voltage and it also can be used as a capacitorbased voltage sensor interface to measure voltage level under fixed capacitance. The new method achieves the same accuracy with less than half the circuit size, and 25% and 33% savings on power and energy consumption compared with the state of art benchmark. The method has been validated by experimenting with a chip fabricated in 350nm process, in addition to extensive simulation analysis
    • 

    corecore