50 research outputs found

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Vehicular Visible Light Communications

    Get PDF
    Vehicular communications are foreseen to play a key role to increase road safety and realize autonomous driving. In addition to the radio frequency (RF)-based dedicated short range communication (DSRC) and long-term evolution (LTE) communication technologies, vehicular visible light communication (V2LC) is proposed as a complementary solution, utilizing readily deployed vehicle light emitting diode (LED) lights as transmitter with image sensors such as photodetector (PD) and camera as the receivers. V2LC fundamentals including transmitter and receiver characteristics with dimming capabilities are reviewed in this chapter. Depending on the field measurements using off-the-shelf automotive LED light, communication constraints are demonstrated. Moreover, considering the line-of-sight (LoS) characteristics, security aspects of V2LC is compared with the DSRC for a practical vehicle-to-vehicle (V2V) communication scenario. Finally, superiority of V2LC in terms of communication security with the proposed SecVLC method is demonstrated through simulation results

    Joint Optimization of Illumination and Communication for a Multi-Element VLC Architecture

    Get PDF
    Because of the ever increasing demand wireless data in the modern era, the Radio Frequency (RF) spectrum is becoming more congested. The remaining RF spectrum is being shrunk at a very heavy rate, and spectral management is becoming more difficult. Mobile data is estimated to grow more than 10 times between 2013 and 2019, and due to this explosion in data usage, mobile operators are having serious concerns focusing on public Wireless Fidelity (Wi-Fi) and other alternative technologies. Visible Light Communication (VLC) is a recent promising technology complementary to RF spectrum which operates at the visible light spectrum band (roughly 400 THz to 780 THz) and it has 10,000 times bigger size than radio waves (roughly 3 kHz to 300 GHz). Due to this tremendous potential, VLC has captured a lot of interest recently as there is already an extensive deployment of energy efficient Light Emitting Diodes (LEDs). The advancements in LED technology with fast nanosecond switching times is also very encouraging. In this work, we present hybrid RF/VLC architecture which is capable of providing simultaneous lighting and communication coverage in an indoor setting. The architecture consists of a multi-element hemispherical bulb design, where it is possible to transmit multiple data streams from the multi-element hemispherical bulb using LED modules. We present the detailed components of the architecture and make simulations considering various VLC transmitter configurations. Also, we devise an approach for an efficient bulb design mechanism to maintain both illumination and communication at a satisfactory rate, and analyze it in the case of two users in a room. The approach involves formulating an optimization problem and tackling the problem using a simple partitioning algorithm. The results indicate that good link quality and high spatial reuse can be maintained in a typical indoor communication setting

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Trace-Orthogonal PPM-Space Time Block Coding Under Rate Constraints for Visible Light Communication

    Get PDF
    Visible light communications (VLC) represents a new frontier of communications allowing high data-rate Internet access, specially in indoor environments, where the use of light emitting diodes (LEDs) is growing as a viable alternative to traditional illumination. As a result, LED output intensity can be varied faster than human eye can perceive, thus guaranteeing simultaneous wireless communications and illumination. One of the key challenges is the limited modulation bandwidth of sources that is typically around several MHz. The use of multiple input and multiple output (MIMO) techniques in optical wireless system helps to increase the capacity of the system and thus improve the system performance. In this paper, we investigate the use of an optical MIMO technique jointly with pulse position modulation (PPM) in order to improve the data rates without reducing the reliability of the link. PPM is known to be signal-to-noise ratio efficient modulation format, while it is bandwidth inefficient so the use of MIMO can compensate that drawback with reasonable complexity. Furthermore, an offline tool for VLC system planning, including error probability and transmission rate, has been proposed in order to solve the tradeoff between transmission rate and error rate. Finally, several numerical results and performance comparisons are reported

    Dimmable visible light communications based on multilayer ACO-OFDM

    No full text
    This paper proposes a dimmable scheme for a visible light communication (VLC) system based on multilayer asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM), which is able to support a wide dimming range for different illumination requirements. In the proposed scheme, multiple layers of ACO-OFDM occupying different subcarriers are combined so that almost all of the subcarriers can be used for data transmission. The polarities of different layers of ACO-OFDM are varied to obtain flexible time-domain waveform, which can fully exploit the dynamic range of light-emitting diodes (LEDs) and achieve better performance. The scaling factor and modulation order for each layer, as well as the dc bias, are optimized for different dimming requirements to achieve improved spectral efficiency. Simulation results demonstrate that the proposed scheme can support communication over a wide dimming range and achieve higher spectral efficiency, compared with existing methods under different dimming requirements

    Energy efficient visible light communications relying on amorphous cells

    No full text
    In this paper, we design an energy efficient indoor Visible Light Communications (VLC) system from a radically new perspective based on an amorphous user-to-network association structure. Explicitly, this intriguing problem is approached from three inter-linked perspectives, considering the cell formation, link-level transmission and system-level optimisation, critically appraising the related optical constraints. To elaborate, apart from proposing hitherto unexplored Amorphous Cells (A-Cells), we employ a powerful amalgam of Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplexing (ACO-OFDM) and transmitter pre-coding aided Multi-Input Single-Output (MISO) transmission. As far as the overall systemlevel optimisation is concerned, we propose a low-complexity solution dispensing with the classic Dinkelbach’s algorithmic structure. Our numerical study compares a range of different cell formation strategies and investigates diverse design aspects of the proposed A-Cells. Specifically, our results show that the A-Cells proposed are capable of achieving a much higher energy efficiency per user compared to that of the conventional cell formation for a range of practical Field of Views (FoVs) angles
    corecore