195 research outputs found

    LoRaWAN device security and energy optimization

    Get PDF
    Resource-constrained devices are commonly connected to a network and become things that make up the Internet of Things (IoT). Many industries are interested in cost-effective, reliable, and cyber secure sensor networks due to the ever-increasing connectivity and benefits of IoT devices. The full advantages of IoT devices are seen in a long-range and remote context. However, current IoT platforms show many obstacles to achieve a balance between power efficiency and cybersecurity. Battery-powered sensor nodes can reliably send data over long distances with minimal power draw by adopting Long-Range (LoRa) wireless radio frequency technology. With LoRa, these devices can stay active for many years due to a low data bit rate and low power draw during device sleep states. An improvement built on top of LoRa wireless technology, Long-Range Wide Area Networks (LoRaWAN), introduces integrity and confidentiality of the data sent within the IoT network. Although data sent from a LoRaWAN device is encrypted, protocol and implementation vulnerabilities still exist within the network, resulting in security risks to the whole system. In this research, solutions to these vulnerabilities are proposed and implemented on a LoRaWAN testbed environment that contains devices, gateways, and servers. Configurations that involve the transmission of data using AES Round Reduction, Join Scheduling, and Metadata Hiding are proposed in this work. A power consumption analysis is performed on the implemented configurations, resulting in a LoRaWAN system that balances cybersecurity and battery life. The resulting configurations may be harnessed for usage in the safe, secure, and efficient provisioning of LoRaWAN devices in technologies such as Smart-Industry, Smart-Environment, Smart-Agriculture, Smart-Universities, Smart-Cities, et

    A Survey on Long-Range Wide-Area Network Technology Optimizations

    Get PDF
    Long-Range Wide-Area Network (LoRaWAN) enables flexible long-range service communications with low power consumption which is suitable for many IoT applications. The densification of LoRaWAN, which is needed to meet a wide range of IoT networking requirements, poses further challenges. For instance, the deployment of gateways and IoT devices are widely deployed in urban areas, which leads to interference caused by concurrent transmissions on the same channel. In this context, it is crucial to understand aspects such as the coexistence of IoT devices and applications, resource allocation, Media Access Control (MAC) layer, network planning, and mobility support, that directly affect LoRaWAN’s performance.We present a systematic review of state-of-the-art works for LoRaWAN optimization solutions for IoT networking operations. We focus on five aspects that directly affect the performance of LoRaWAN. These specific aspects are directly associated with the challenges of densification of LoRaWAN. Based on the literature analysis, we present a taxonomy covering five aspects related to LoRaWAN optimizations for efficient IoT networks. Finally, we identify key research challenges and open issues in LoRaWAN optimizations for IoT networking operations that must be further studied in the future

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects

    Contention Based SCMA for NB-IoT Uplink Communication using Finite Memory Sequential Learning

    Get PDF

    Autonomous collision-free scheduling for LoRa-based industrial Internet of Things

    Get PDF
    LoRa-based transmissions suffer from extensive collisions even for low node numbers due to unregulated access to the medium. In order to tackle this problem, we propose a collision-free time-slotted scheduling approach where each node autonomously decides when to transmit a packet based on its unique identifier which is converted to a slot number using a modulo operation. We report through simulations and real experiments that this approach can provide very high reliability when the nodes are synchronized. Moreover, it does not require any additional communication overhead apart from a broadcast packet emitted by the gateway. Our comparison with the native LoRa, as well as to a slotted-LoRa version, shows significant performance gains in terms of packet delivery ratio, especially in the case of low node populations

    Fast and reliable LoRa-based data transmissions

    Get PDF
    LoRaWAN is a recently proposed MAC layer protocol which manages communications between LoRa-based gate-ways and end-devices. It has attracted much scientific attention due its physical layer characteristics, but mainly due to its versatile configuration parameters. However, it is known that LoRaWAN-based transmissions suffer from extensive collisions due to the unregulated access to the medium. For this reason, various techniques that alleviate the burst of collisions have been proposed in the literature. In this paper, we deal with the problem of fast data delivery in LoRa-based networks. We model a network where transmissions follow a Poisson process. We compute the average packet success probability per Spreading Factor (SF) assuming orthogonal transmissions. We, then, formulate an SF optimization problem to maximize the success probability given an amount of data per node and a maximum data collection time window. We show - both theoretically and using simulations - that the overall success probability can be improved by approximately 100% using optimal SF assignments. We validate our findings using a 10-node testbed and extensive experiments. Despite that experiments reveal the existence of inter-SF interference, our solution still provides the best performance compared to other LoRaWAN configurations
    • …
    corecore