463 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Stator inter-turn faults diagnosis in induction motors using zero-sequence signal injection

    Get PDF
    This study presents a strategy for stator inter-turn faults diagnosis in induction motors (IMs) operating under timevariable load and time-variable speed conditions. The strategy consists in injecting a zero-sequence high-frequency signal in order to analyse variations in the stator inductances. Incipient stator inter-turn faults are detected by a simple signal processing of the derivatives of the currents. A feature of the strategy is that the zero-sequence high-frequency signal is generated by the inverter that feeds the machine, without modifying the standard space vector modulation of the IM-drive. Experimental results show that faults representing <1% of the stator winding can be detected, as well as the phase location of the fault, validating this proposal.Fil: Otero, Marcial. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: de la Barrera, Pablo Martin. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Bossio, Guillermo Rubén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Leidhold, Roberto. Otto-von-Guericke-Universität Magdeburg; Alemani

    Applications of Power Electronics:Volume 1

    Get PDF

    Advanced Power Loss Modeling and Model-Based Control of Three-Phase Induction Motor Drive Systems

    Get PDF
    Three-phase induction motor (IM) drive systems are the most important workhorses of many industries worldwide. This dissertation addresses improved modeling of three-phase IM drives and model-based control algorithms for the purpose of designing better IM drive systems. Enhancements of efficiency, availability, as well as performance of IMs, such as maximum torque-per-ampere capability, power density, and torque rating, are of major interest. An advanced power loss model of three-phase IM drives is proposed and comprehensively validated at different speed, load torque, flux and input voltage conditions. This model includes a core-loss model of three-phase IMs, a model of machine mechanical and stray losses, and a model of power electronic losses in inverters. The drive loss model shows more than 90% accuracy and is used to design system-level loss minimization control of a motor drive system, which is integrated with the conventional volts-per-hertz control and indirect field-oriented control as case studies. The designed loss minimization control leads to more than 13% loss reduction than using rated flux for the testing motor drive under certain conditions. The proposed core-loss model is also used to design an improved model-based maximum torque-per-ampere control of IMs by considering core losses. Significant increase of torque-per-ampere capability could be possible for high-speed IMs. A simple model-based time-domain fault diagnosis method of four major IM faults is provided; it is nonintrusive, fast, and has excellent fault sensitivity and robustness to noise and harmonics. A fault-tolerant control scheme for sensor failures in closed-loop IM drives is also studied, where a multi-controller drive is proposed and uses different controllers with minimum hand-off transients when switching between controllers. A finite element analysis model of medium-voltage IMs is explored, where electromagnetic and thermal analyses are co-simulated. The torque rating and power density of the simulated machine could be increased by 14% with proper change of stator winding insulation material. The outcome of this dissertation is an advanced three-phase IM drive that is enhanced using model-based loss minimization control, fault detection and diagnosis of machine faults, fault-tolerant control under sensor failures, and performance-enhancement suggestions

    Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection

    Get PDF
    Inverter-fed induction motors (IMs) contain a serious of current harmonics, which become severer under stator and rotor faults. The resultant fault components in the currents affect the monitoring of the motor status. With this background, the fault components in the electromagnetic torque under stator faults considering harmonics are derived in this paper, and the fault components in current harmonics under rotor faults are analyzed. More importantly, the monitoring based on the fault characteristics (both in the torque and current) is proposed to provide reliable stator and rotor fault diagnosis. Specifically, the fault components induced by stator faults in the electromagnetic torque are discussed in this paper, and then, fault components are characterized in the torque spectrum to identify stator faults. To achieve so, a full-order flux observer is adopted to calculate the torque. On the other hand, under rotor faults, the sidebands caused by time and space harmonics in the current are analyzed and exploited to recognize rotor faults, being the motor current signature analysis (MCSA). Experimental tests are performed on an inverter-fed 2.2 kW/380 V/50 Hz IM, which verifies the analysis and the effectiveness of the proposed fault diagnosis methods of inverter-fed IMs

    Fault Diagnostic System for Cascaded H-bridge Multilevel Inverter Drives Based on Artificial Intelligent Approaches Incorporating a Reconfiguration Technique

    Get PDF
    A fault diagnostic and reconfiguration system in a multilevel inverter drive (MLID) using artificial intelligent based techniques is developed in this dissertation. Output phase voltages of a MLID can be used as valuable information to diagnose faults and their locations. It is difficult to diagnose a MLID system using a mathematical model because MLID systems consist of many switching devices and their system complexity has a nonlinear factor. Therefore, a neural network (NN) classification is applied to the fault diagnosis of a MLID system. Multilayer perceptron (MLP) networks are used to identify the type and location of occurring faults. The principal component analysis (PCA) is utilized in the feature extraction process to reduce the NN input size. A lower dimensional input space will also usually reduce the time necessary to train a NN, and the reduced noise may improve the mapping performance. The genetic algorithm is also applied to select the valuable principal components. The comparison among MLP neural network (NN), principal component neural network (PC-NN), and genetic algorithm based selective principal component neural network (PC-GA-NN) are performed. Proposed neural networks are evaluated with simulation test set and experimental test set. The PC-NN has improved overall classification performance from NN by about 5% points, whereas PC-GA-NN has better overall classification performance from NN by about 7.5% points. Therefore, the application of a genetic algorithm improves the classification from PC-NN by about 2.5% point. The overall classification performance of the proposed networks is more than 90%. A reconfiguration technique is also developed. The effects of using the developed reconfiguration technique at high modulation index are addressed. The developed fault diagnostic system is validated with experimental results. The developed fault diagnostic system requires about 6 cycles at 60 Hz to clear an open circuit and about 9 cycles at 60 Hz to clear a short circuit fault. The experimental results show that the developed system performs satisfactorily to detect the fault type, fault location, and reconfiguration

    Motor Fault Diagnosis Using Higher Order Statistical Analysis of Motor Power Supply Parameters

    Get PDF
    Motor current signature analysis (MCSA) has been an effective method to monitor electrical machines for many years, predominantly because of its low instrumentation cost, remote implementation and comprehensive information contents. However, it has shortages of low accuracy and efficiency in resolving weak signals from incipient faults, such as detecting early stages of induction motor fault. In this thesis MCSA has been improved to accurately detect electrical and mechanical faults in the induction motor namely broken rotor bars, stator faults and motor bearing faults. Motor current signals corresponding to a healthy (baseline) and faulty condition on induction motor at different loads (zero, 25%, 50% and 75% of full load) were rearranged and the baseline current data were examined using conventional methods in frequency domain and referenced for comparison with new modulation signal bispectrum. Based on the fundamental modulation effect of the weak fault signatures, a new method based on modulation signal bispectrum (MSB) analysis is introduced to characterise the modulation and hence for accurate quantification of the signatures. This method is named as (MSB-SE). For broken rotor bar(BRB), the results show that MSB-SE suggested in this research outperforms conventional bispectrum CB significantly for all cases due its high performance of nonlinear modulation detection and random noise suppression, which demonstrates that MSB-SE is an outstanding technique whereas (CB) is inefficient for motor current signal analysis [1] . Moreover the new estimators produce more accurate results at zero, 25%, 50%, 75% of full load and under broken rotor bar, compared with power spectrum analysis. Especially it can easily separate the half BRB at a load as low as 25% from baseline where PS would not produce a correct separation. In case of stator faults, a MSB-SE is investigated to detect different severities of stator faults for both open and short circuit. It shows that MSB-SE has the capability to accurately estimate modulation degrees and suppress the random and non-modulation components. Test results show that MSB-SE has a better performance in differentiating spectrum amplitudes due to stator faults and hence produces better diagnosis performance, compared with that of power spectrum (PS). For motor bearing faults, tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high noise levels, MSB-SE is used to detect and diagnose different motor bearing defects. The results show that bearing faults can induce detectable amplitude increases at its characteristic frequencies. MSB-SE peaks show a clear difference at these frequencies whereas the conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in detecting small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also shows that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component. This research also applies a mathematical model for the simulation of current signals under healthy and broken bars condition in order to further understand the characteristics of fault signature to ensure the methodologies used and accuracy achieved in the detection and diagnosis results. The results show that the frequency spectrum of current signal outputs from the model take the expected form with peaks at the sideband frequency and associated harmonics

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Induction motor bearing fault detection using a sensorless approach

    Get PDF
    Continuous condition assessment of induction motors is very important due to its potential to reduce down-time and manpower needed in industry. Rolling element bearing faults result in more than 40% of all induction motor failures. Vibration analysis has been utilized to detect bearing faults for years. However, vibration sensors and expert vibration interpretation are expensive. This limitation prevents widespread monitoring of continuous bearing conditions in induction motors, which provides better performance compared to periodic monitoring, a typical practice for motor bearing maintenance in industry. A strong motivation exists for finding a costeffective approach for the detection of bearing faults. Motor terminal signals have attracted much attention. However, not many papers in the literature address this issue as it relates to bearing faults, because of the difficulties in effective detection. In this research, an incipient bearing fault detection method for induction motors is proposed based on the analysis of motor terminal voltages and currents. The basic idea of this method is to detect changes in amplitude modulation between the spatial harmonics caused by bearing faults and the supply fundamental frequency. This amplitude modulation relationship can be isolated using the phase coupling property. An Amplitude Modulation Detector (AMD), developed from higher order spectrum estimation, correctly captures the phase coupling and isolates these modulation relationships. In this research, in-situ bearing damage experiments are conducted so that the accelerated life span of the bearing can be recorded and investigated. Experimental results shown in this dissertation are based on different power supplies, load levels, VSI control schemes, and motor operating conditions. Taking the mechanical vibration indicator as a reference for fault detection, the proposed method is demonstrated to be effective in detecting incipient bearing faults in induction motors. If motors are operating at near steady state conditions, then experimental results show that the bearing fault detection rate of the proposed approach is 100%, while no false alarms are recorded
    corecore