295 research outputs found

    Arrayed Waveguide Grating-Based Interrogation System for Safety Applications and High-Speed Measurements

    Get PDF
    This thesis is focused on the design of two interrogation systems for Fiber Bragg Grating (FBG) sensors based on the Wavelength Domain Multiplexing (WDM) by means of the Arrayed Waveguide Grating (AWG) device. The FBG sensors have been employed in a large number of environments thanks to their intrinsic characteristics. To design a measurement system based on the Fiber Optic Sensor (FOS) technology, it is mandatory to make use of an optoelectronic system with the aim to "read" the wavelength shifting performed by the sensors. This latter is named interrogation system and, actually, sets a limit on the employability of the FBG sensors, due to its cost, design complexity and low reliability in some contests. For this reasons, the researchers are constantly looking on new technologies for the design of innovative interrogation systems. The AWG device seems to provide characteristics which cannot be reached with other devices and, due to its passivity, gives the possibility to increase the system speed to let the FBG sensors to be employed also for the detection of high-speed phenomena. Furthermore, thanks to the robustness and reliability of AWG device, is possible to turn an interrogation system into a full analog monitoring system employable in a safety scenario, such as industrial processes or other kind of environments, in which digital processing does not ensure enough reliability

    Photonics-enabled very high capacity wireless communication for indoor applications

    Get PDF

    A Multi-Floor Arrayed Waveguide Grating Based Architecture with Grid Topology for Datacenter Networks

    Get PDF
    This paper proposes a grid topology based passive optical interconnect (POI) architecture that is composed of multiple floors of arrayed waveguide grating routers (AWGRs) to offer high connectivity and scalability for datacenter networks. In the proposed POI signal only needs to pass one AWGR, and thus can avoid the crosstalk accumulation and cascaded filtering effects, which exist in many existing POI architectures based on cascaded AWGRs. Meanwhile, due to high connectivity, the proposed grid topology based POI also has the potential advantage of high reliability. Simulation results validate the network performance. With a proper node degree, the proposed grid topology can achieve acceptable blocking probability. Besides, steady performance is kept when the number of floors increases, indicating good scalability of the proposed POI

    A 40 Gb/s chip-to-chip interconnect for 8-socket direct connectivity using integrated photonics

    Get PDF
    We present an O-band any-to-any chip-to-chip (C2C) interconnection at 40 Gb/s suitable for up to 8-socket direct connectivity in multi-socket server boards, utilizing integrated low-energy photonics for the transceiver and routing functions. The C2C interconnect exploits an Si-based ring modulator as its transmitter and a co-packaged photodiode/transimpedance amplifier enabled receiver interconnected over an 8 x 8 Si-based arrayed waveguide grating router, allowing for a single-hop flat-topology interconnection between eight nodes. A proof-of-concept demonstration of the C2C interconnect is presented at 25 and 40 Gb/s for eight possible routing scenarios, revealing clear eye diagrams at both data rates with extinction ratios of 4.8 +/- 0.3 and 4.38 +/- 0.31 dB, respectively, among the eight routed signals

    Optically reconfigurable 1 x 4 remote node switch for access networks

    Get PDF
    In this paper we demonstrate an optically controlled 1 x 4 remote node switch, based on membrane InP switches bonded to a silicon-on-insulator circuit. We show that the switch exhibits cross talk better than 25 dB between the output ports, and that the switch operates without receiver sensitivity penalty. Furthermore, the proposed switch architecture allows for optical clock distribution as a means to avoid the need for clock recovery at the receiver side. This is demonstrated in a proof-of-principle experiment where data and clock are sent through a single membrane InP switch

    Semiconductor optical amplifiers: performance and applications in optical packet switching [Invited]

    Get PDF
    Semiconductor optical amplifiers (SOAs) are a versatile core technology and the basis for the implementation of a number of key functionalities central to the evolution of highly wavelength-agile all-optical networks. We present an overview of the state of the art of SOAs and summarize a range of applications such as power boosters, preamplifiers, optical linear (gain-clamped) amplifiers, optical gates, and modules based on the hybrid integration of SOAs to yield high-level functionalities such as all-optical wavelength converters/regenerators and small space switching matrices. Their use in a number of proposed optical packet switching situations is also highlighted

    Proceedings of the 18th annual symposium of the IEEE Photonics Society Benelux Chapter, November 25-26, 2013, Eindhoven, The Netherlands

    Get PDF

    Proceedings of the 18th annual symposium of the IEEE Photonics Society Benelux Chapter, November 25-26, 2013, Eindhoven, The Netherlands

    Get PDF

    Integrated wavelength division multiplexing receivers

    Get PDF
    corecore