1,058 research outputs found

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    This workshop was well attended by 52 participants with broad geographic representation from 11 countries and 3 continents. It was a nice blend of researchers with various backgrounds

    On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    Get PDF
    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed

    WAVELET REGULARIZATION OF A FOURIER-GALERKIN METHOD FOR SOLVING THE 2D INCOMPRESSIBLE EULER EQUATIONS

    Get PDF
    International audienceWe employ a Fourier-Galerkin method to solve the 2D incompressible Euler equations, and study several ways to regularize the solution by wavelet filtering at each timestep. Real-valued orthogonal wavelets and complex-valued wavelets are considered, combined with either linear or non-linear filtering. The results are compared with those obtained via classical viscous and hyperviscous regularization methods. Wavelet regularization using complex-valued wavelets performs as well in terms of L2 convergence rate to the reference solution. The compression rate for homogeneous 2D turbulence is around 3 for this method, suggesting that memory and CPU time could be reduced in an adaptive wavelet computation. Our results also suggest L2 convergence to the reference solution without any regularization, in contrast to what is obtained for the 1D Burgers equation

    Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999

    Semiannual final report, 1 October 1991 - 31 March 1992

    Get PDF
    A summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period 1 Oct. 1991 through 31 Mar. 1992 is presented

    Parallel Computation of Unsteady Flows on a Network of Workstations

    Get PDF
    Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest
    corecore