7,360 research outputs found

    Low Latency Driven Effective Capacity Analysis for Non-Orthogonal and Orthogonal Spectrum Access

    Get PDF
    In this paper, we theoretically investigate the performance of non-orthogonal and orthogonal spectrum access protocols (more generically known as NOMA) in supporting ultra-reliable low-latency communications (URLLC). The theory of effective capacity (EC) is adopted as a suitable delay-guaranteed capacity metric to flexibly represent the users' delay requirements. Then, the total EC difference between a downlink user-paired NOMA network and a downlink orthogonal multiple access (OMA) network is analytically studied. Exact closed-form expressions and the approximated closed-forms at high signal-to-noise ratios (SNRs) are derived for both networks and validated through simulation results. It is shown that for a user pair in which two users with the most distinct channel conditions are paired together, NOMA still achieves higher total EC (compared to OMA) in high SNR regime as the user group size becomes larger, although the EC performance of both NOMA and OMA reduces with the increase in group size. It is expected that the derived analytical framework can serve as a useful reference and practical guideline for designing favourable orthogonal and nonorthogonal spectrum access schemes in supporting low-latency services

    Short-Packet Downlink Transmission with Non-Orthogonal Multiple Access

    Full text link
    This work introduces downlink non-orthogonal multiple access (NOMA) into short-packet communications. NOMA has great potential to improve fairness and spectral efficiency with respect to orthogonal multiple access (OMA) for low-latency downlink transmission, thus making it attractive for the emerging Internet of Things. We consider a two-user downlink NOMA system with finite blocklength constraints, in which the transmission rates and power allocation are optimized. To this end, we investigate the trade-off among the transmission rate, decoding error probability, and the transmission latency measured in blocklength. Then, a one-dimensional search algorithm is proposed to resolve the challenges mainly due to the achievable rate affected by the finite blocklength and the unguaranteed successive interference cancellation. We also analyze the performance of OMA as a benchmark to fully demonstrate the benefit of NOMA. Our simulation results show that NOMA significantly outperforms OMA in terms of achieving a higher effective throughput subject to the same finite blocklength constraint, or incurring a lower latency to achieve the same effective throughput target. Interestingly, we further find that with the finite blocklength, the advantage of NOMA relative to OMA is more prominent when the effective throughput targets at the two users become more comparable.Comment: 15 pages, 9 figures. This is a longer version of a paper to appear in IEEE Transactions on Wireless Communications. Citation Information: X. Sun, S. Yan, N. Yang, Z. Ding, C. Shen, and Z. Zhong, "Short-Packet Downlink Transmission with Non-Orthogonal Multiple Access," IEEE Trans. Wireless Commun., accepted to appear [Online] https://ieeexplore.ieee.org/document/8345745

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Performance Enhancement Using NOMA-MIMO for 5G Networks

    Get PDF
    The integration of MIMO and NOMA technologies addresses key challenges in 5G and beyond, such as connectivity, latency, and dependability. However, resolving these issues, especially in MIMO-enabled 5G networks, required additional research. This involved optimizing parameters like bit error rate, downlink spectrum efficiency, average capacity rate, and uplink transmission outage probability. The model employed Quadrature Phase Shift Keying modulation on selected frequency channels, accommodating diverse user characteristics. Evaluation showed that MIMO-NOMA significantly improved bit error rate and transmitting power for the best user in download transmission. For uplink transmission, there was an increase in the average capacity rate and a decrease in outage probability for the best user. Closed-form formulas for various parameters in both downlink and uplink NOMA, with and without MIMO, were derived. Overall, adopting MIMO-NOMA led to a remarkable performance improvement for all users, even in challenging conditions like interference or fading channels
    • …
    corecore